Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving

This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle.




References:
[1] B. Armstrong-H´elouvry, P. Dupont and C.C. de Wit, A survey of models,
analysis tools and compensation methods for the control of machines with
friction, Automatica 30.7: 1083-1138, 1994
[2] D.A. Haessig, B. Friedland, On the modeling and simulation of
friction, Journal of Dynamic Systems, Measurement, and Control, 113(3),
354-362, 1991
[3] P.R. Dahl, A solid friction model (No. TOR-0158 (3107-18)-1).
AEROSPACE CORP EL SEGUNDO CA, 1968
[4] P.R. Dahl, Solid friction damping of spacecraft oscillations (No. TR-0076
(6901-03)-2). AEROSPACE CORP EL SEGUNDO CALIF GUIDANCE
AND CONTROL DIV, 1975
[5] C.C. de Wit, H. Olsson, K.J. °Astr ¨om, and P. Lischinsky, A new model for
control of systems with friction, Automatic Control, IEEE Transactions
on, 40(3), 419-425, 1995
[6] H. Olsson, K.J. °Astr ¨om, C.C. de Wit, M. G¨afvert,P. Lischinsky, Friction
models and friction compensation, European journal of control, 4(3),
176-195, 1998
[7] C. Rathgeber, F. Winkler, D. Odenthal and S. M¨uller, Lateral
trajectory tracking control for autonomous vehicles, In European Control
Conference (ECC), 1024-1029, 2014
[8] M. Walter, N. Nitzsche, D. Odenthal and S. M¨uller, Lateral vehicle
guidance control for autonomous and cooperative driving, In European
Control Conference (ECC), 2667-2672, 2014
[9] L. Le Tien, A. Albu-Sch¨affer, A. De Luca and G. Hirzinger, Friction
observer and compensation for control of robots with joint torque
measurement, IEEE/RSJ International Conference on Intelligent Robots
and Systems,3789-3795, 2008
[10] P. Lischinsky, C.C. de Wit and G. Morel, Friction compensation for an
industrial hydraulic robot, Control Systems, IEEE, 19(1), 25-32, 1999
[11] A. Amthor, T. Hausotte, C. Ament, P. Li and G. J¨ager, Friction
identification and compensation on nanometer scale, In Proc. IFAC World
Congress (pp. 2014-2019), 2008
[12] L. M´arton and B. Lantos, Modeling, identification, and compensation
of stick-slip friction Industrial Electronics, IEEE Transactions on, 54(1),
511-521, 2007
[13] S.A. Fankem, T. Weiskircher and S. M¨uller, Model-Based Rack Force
Estimation for Electric Power Steering In World Congress (Vol. 19, No.
1, pp. 8469-8474), 2014
[14] J. Amin, B. Friedland and A. Harnoy, Implementation of a friction
estimation and compensation technique Control Systems, IEEE, 17(4),
71-76, 1997
[15] B. Friedland and Y.J. Park, On adaptive friction compensation Automatic
Control, IEEE Transactions on, 37(10), 1609-1612, 1992
[16] D. Putra, H. Nijmeijer and N. van de Wouw, Analysis of
undercompensation and overcompensation of friction in 1DOF
mechanical systems Automatica, 43(8), 1387-1394, 2007