Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier

An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.

DIVAD: A Dynamic and Interactive Visual Analytical Dashboard for Exploring and Analyzing Transport Data

The advances in location-based data collection technologies such as GPS, RFID etc. and the rapid reduction of their costs provide us with a huge and continuously increasing amount of data about movement of vehicles, people and goods in an urban area. This explosive growth of geospatially-referenced data has far outpaced the planner-s ability to utilize and transform the data into insightful information thus creating an adverse impact on the return on the investment made to collect and manage this data. Addressing this pressing need, we designed and developed DIVAD, a dynamic and interactive visual analytics dashboard to allow city planners to explore and analyze city-s transportation data to gain valuable insights about city-s traffic flow and transportation requirements. We demonstrate the potential of DIVAD through the use of interactive choropleth and hexagon binning maps to explore and analyze large taxi-transportation data of Singapore for different geographic and time zones.

Effective Self-Preservation of Methane Hydrate Particles in Crude Oils

In this work we investigated the behavior of methane hydrates dispersed in crude oils from different fields at temperatures below 0°C. In case of crude oil emulsion the size of water droplets is in the range of 50e100"m. The size of hydrate particles formed from droplets is the same. The self-preservation is not expected in this field. However, the self-preservation of hydrates with the size of particles 24±18"m (electron microscopy data) in suspensions is observed. Similar results were obtained for four different kinds of crude oil and model system such as asphaltenes, resins and wax in ndecane. This result can allow developing effective methods to prevent the formation and elimination of gas-hydrate plugs in pipelines under low temperature conditions (e. g. in Eastern Siberia). There is a prospective to use experiment results for working out the technology of associated petroleum gas recovery.

Preparation and Characterisation of Chemically Activated Almond Shells by Optimization of Adsorption Parameters for Removal of Chromium VI from Aqueous Solutions

Activated carbon was prepared from agricultural waste “almond (Prunus amygdalus) nut shells" by chemical activation with phosphoric acid as an activating agent at 450 °C for 24 hr soaking time. The physical and chemical properties were analyzed. The adsorption of chromium VI from aqueous solution on almond nut shell activated carbon (ASAC) was investigated. The adsorption process parameters pH, agitation speed, agitation time, adsorbent dose were optimized. 98% of Cr VI was sorbed at pH 2 and stirring speed 200 rpm.. Surface structure showed that ASAC has a spongy type structure showing large number of pores

Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

Influence of Raw Materials Ratio and Sintering Temperature on the Properties of the Refractory Mullite-Corundum Ceramics

The alumosilicate ceramics with mullite crystalline phase are used in various branches of science and technique. The mullite refractory ceramics with high porosity serve as a heat insulator and as a constructional materials [1], [2]. The purpose of the work was to sinter high porosity ceramic and to increase the quantity of mullite phase in this mullite, mullite-corundum ceramics. Two types of compositions were prepared at during the experiment. The first type is compositions with commercial alumina and silica oxides. The second type is from mixing these oxides with 10, 20 and 30 wt.%. of kaolin. In all samples the Al2O3 and SiO2 were in 2.57:1 ratio, because that was conformed to mullite stechiometric compositions (3Al2O3.2SiO2). The types of alumina oxides were α-Al2O3 (d50=4µm) and γ-Al2O3 (d50=80µm). Ratios of α-: γ-Al2O3 were (1:1) or (1:3). The porous materials were prepared by slip casting of suspension of raw materials. The aluminium paste (0.18 wt.%) was used as a pore former. Water content in the suspensions was 26-47 wt.%. Pore formation occurred as a result of hydrogen formation in chemical reaction between aluminium paste and water [2]. The samples were sintered at the temperature of 1650°C and 1750°C for one hour. The increasing amount of kaolin, α-: γ-Al2O3 at the ratio (1:3) and sintering at the highest temperature raised the quantity of mullite phase. The mullite phase began to dominate over the corundum phase.

Comparison of Stochastic Point Process Models of Rainfall in Singapore

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.

Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion and Strength in Patients with Plantar Fasciitis

Ten percent of the population will develop plantar fasciitis (PF) during their lifetime. Two million people are treated yearly accounting for 11-15% of visits to medical professionals. Treatment ranges from conservative to surgical intervention. The purpose of this study was to assess the effects of extracorporeal shockwave therapy (ECSWT) on heel pain, function, range of motion (ROM), and strength in patients with PF. One hundred subjects were treated with ECSWT and measures were taken before and three months after treatment. There was significant differences in visual analog scale scores for pain at rest (p=0.0001); after activity (p= 0.0001) and; overall improvement (p=0.0001). There was also significant improvement in Lower Extremity Functional Scale scores (p=0.0001); ankle plantarflexion (p=0.0001), dorsiflexion (p=0.001), and eversion (p=0.017),and first metatarsophalangeal joint flexion (p=0.002) and extension (p=0.003) ROM. ECSWT is an effective treatment improving heel pain, function and ROM in patients with PF.

Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template

An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.

Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization

Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.

Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather

Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state.

Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum oxide is not applied to the surface like paint or plating, but is fully integrated with the underlying aluminum substrate, so cannot chip or peel. It has a highly ordered, porous structure that allows for secondary processes such as coloring and sealing. In this experimental paper, we focus on a reliable method for fabricating nanoporous alumina with high regularity. Starting from study of nanostructure materials synthesize methods. After that, porous alumina fabricate in the laboratory by anodization of aluminum oxide. Hard anodization processes are employed to fabricate the nanoporous alumina using 0.3M oxalic acid and 90, 120 and 140 anodized voltages. The nanoporous templates were characterized by SEM and FFT. The nanoporous templates using 140 voltages have high ordered. The pore formation, influence of the experimental conditions on the pore formation, the structural characteristics of the pore and the oxide chemical reactions involved in the pore growth are discuss.

The Effects of Four Organic Cropping Sequences on Soil Phosphorous Cycling and Arbuscular Mycorrhizal Fungi

Organic farmers across Saskatchewan face soil phosphorus (P) shortages. Due to the restriction on inputs in organic systems, farmers rely on crop rotation and naturally-occurring arbuscular mycorrhizal fungi (AMF) for plant P supply. Crop rotation is important for disease, pest, and weed management. Crops that are not colonized by AMF (non-mycorrhizal) can decrease colonization of a following crop. An experiment was performed to quantify soil P cycling in four cropping sequences under organic management and determine if mustard (non-mycorrhizal) was delaying the colonization of subsequent wheat. Soils from the four cropping sequences were measured for inorganic soil P (Pi), AMF spore density (SD), phospholipid fatty acid analysis (PLFA, for AMF biomarker counts), and alkaline phosphatase activity (ALPase, related to AMF metabolic activity). Plants were measured for AMF colonization and P content and uptake of above-ground biomass. A lack of difference in AMF activity indicated that mustard was not depressing colonization. Instead, AMF colonization was largely determined by crop type and crop rotation.

Effect of Preheating Temperature and Chamber Pressure on the Properties of Porous NiTi Alloy Prepared by SHS Technique

The fabrication of porous NiTi shape memory alloys (SMAs) from elemental powder compacts was conducted by selfpropagating high temperature synthesis (SHS). Effects of the preheating temperature and the chamber pressure on the combustion characteristics as well as the final morphology and the composition of products were studied. The samples with porosity between 56.4 and 59.0% under preheating temperature in the range of 200-300°C and Ar-gas chamber pressure of 138 and 201 kPa were obtained. The pore structures were found to be dissimilar only in the samples processed with different preheating temperature. The major phase in the porous product is NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3. The preheating temperature and the chamber pressure have very little effect on the phase constituent. While the combustion temperature of the sample was notably increased by increasing the preheating temperature, they were slightly changed by varying the chamber pressure.

The Surface Adsorption of Nano-pore Template

This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.

The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion, and Strength in Patients with Insertional Achilles Tendinosis

Increased physical fitness participation has been paralleled by increasedoveruse injuries such as insertional Achilles tendinosis (AT). Treatment has provided inconsistentresults. The use of extracorporeal shockwave therapy (ECSWT) offers a new treatment consideration.The purpose of this study was to assess the effects of ECSWTon pain, function, range of motion (ROM), joint mobility and strength in patients with AT. Thirty subjects were treated with ECSWT and measures were takenbefore and three months after treatment. There was significant differences in visual analog scale (VAS) scores for pain at rest (p=0.002); after activity (p= 0.0001); overall improvement(p=0.0001); Lower Extremity Functional Scale (LEFS) scores (p=0.002); dorsiflexion range of motion (ROM) (p=0.0001); plantarflexion strength (p=0.025); talocrural joint anterior glide (p=0.046); and subtalar joint medial and lateral glide (p=0.025).ECSWT offers a new intervention that may limit the progression of the disorder and the long term healthcare costs associated with AT.

Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells

Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.

Principal Type of Water Responsible for Damage of Concrete Repeated Freeze-Thaw Cycles

The first and basic cause of the failure of concrete is repeated freezing (thawing) of moisture contained in the pores, microcracks, and cavities of the concrete. On transition to ice, water existing in the free state in cracks increases in volume, expanding the recess in which freezing occurs. A reduction in strength below the initial value is to be expected and further cycle of freezing and thawing have a further marked effect. By using some experimental parameters like nuclear magnetic resonance variation (NMR), enthalpy-temperature (or heat capacity) variation, we can resolve between the various water states and their effect on concrete properties during cooling through the freezing transition temperature range. The main objective of this paper is to describe the principal type of water responsible for the reduction in strength and structural damage (frost damage) of concrete following repeated freeze –thaw cycles. Some experimental work was carried out at the institute of cryogenics to determine what happens to water in concrete during the freezing transition.