Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer

We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.

Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Incorporation Mechanism of Stabilizing Simulated Lead-Laden Sludge in Aluminum-Rich Ceramics

This study investigated a strategy of blending lead-laden sludge and Al-rich precursors to reduce the release of metals from the stabilized products. Using PbO as the simulated lead-laden sludge to sinter with γ-Al2O3 by Pb:Al molar ratios of 1:2 and 1:12, PbAl2O4 and PbAl12O19 were formed as final products during the sintering process, respectively. By firing the PbO + γ-Al2O3 mixtures with different Pb/Al molar ratios at 600 to 1000 °C, the lead transformation was determined through X-ray diffraction (XRD) data. In Pb/Al molar ratio of 1/2 system, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed above 750 °C. An intermediate phase, Pb9Al8O21, was detected in the temperature range of 800-900 °C. However, different incorporation behavior for sintering PbO with Al-rich precursors at a Pb/Al molar ratio of 1/12 was observed during the formation of PbAl12O19 in this system. In the sintering process, both temperature and time effect on the formation of PbAl2O4 and PbAl12O19 phases were estimated. Finally, a prolonged leaching test modified from the U.S. Environmental Protection Agency-s toxicity characteristic leaching procedure (TCLP) was used to evaluate the durability of PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases. Comparison for the leaching results of the four phases demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack.

A New Approach for Controlling Overhead Traveling Crane Using Rough Controller

This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.

A Novel Method Based on Monte Carlo for Simulation of Variable Resolution X-ray CT Scanner: Measurement of System Presampling MTF

The purpose of this work is measurement of the system presampling MTF of a variable resolution x-ray (VRX) CT scanner. In this paper, we used the parameters of an actual VRX CT scanner for simulation and study of effect of different focal spot sizes on system presampling MTF by Monte Carlo method (GATE simulation software). Focal spot size of 0.6 mm limited the spatial resolution of the system to 5.5 cy/mm at incident angles of below 17º for cell#1. By focal spot size of 0.3 mm the spatial resolution increased up to 11 cy/mm and the limiting effect of focal spot size appeared at incident angles of below 9º. The focal spot size of 0.3 mm could improve the spatial resolution to some extent but because of magnification non-uniformity, there is a 10 cy/mm difference between spatial resolution of cell#1 and cell#256. The focal spot size of 0.1 mm acted as an ideal point source for this system. The spatial resolution increased to more than 35 cy/mm and at all incident angles the spatial resolution was a function of incident angle. By the way focal spot size of 0.1 mm minimized the effect of magnification nonuniformity.

Wireless Building Monitoring and Control System

The building sector is the largest energy consumer and CO2 emitter in the European Union (EU) and therefore the active reduction of energy consumption and elimination of energy wastage are among the main goals in it. Healthy housing and energy efficiency are affected by many factors which set challenges to monitoring, control and research of indoor air quality (IAQ) and energy consumption, especially in old buildings. These challenges include measurement and equipment costs, for example. Additionally, the measurement results are difficult to interpret and their usage in the ventilation control is also limited when taking into account the energy efficiency of housing at the same time. The main goal of this study is to develop a cost-effective building monitoring and control system especially for old buildings. The starting point or keyword of the development process is a wireless system; otherwise the installation costs become too high. As the main result, this paper describes an idea of a wireless building monitoring and control system. The first prototype of the system has been installed in 10 residential buildings and in 10 school buildings located in the City of Kuopio, Finland.

Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing

Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.

Green Synthesis of Butyl Acetate, A Pineapple Flavour via Lipase-Catalyzed Reaction

Nowadays, butyl acetate, a pineapple flavor has been applied widely in food, beverage, cosmetic and pharmaceutical industries. In this study, Butyl acetate, a flavor ester was successfully synthesized via green synthesis of enzymatic reaction route. Commercial immobilized lipase from Rhizomucor miehei (Lipozyme RMIM) was used as biocatalyst in the esterification reaction between acetic acid and butanol. Various reaction parameters such as reaction time (RT), temperature (T) and amount of enzyme (E) were chosen to optimize the reaction synthesis in solvent-free system. The optimum condition to produce butyl acetate was at reaction time (RT), 18 hours; temperature (T), 37°C and amount of enzyme, 25 % (w/w of total substrate). Analysis of yield showed that at optimum condition, >78 % of butyl acetate was produced. The product was confirmed as butyl acetate from FTIR analysis whereby the presence of an ester group was observed at wavenumber of 1742 cm-1.

Memory Effects in Randomly Perturbed Nematic Liquid Crystals

We study the typical domain size and configuration character of a randomly perturbed system exhibiting continuous symmetry breaking. As a model system we use rod-like objects within a cubic lattice interacting via a Lebwohl–Lasher-type interaction. We describe their local direction with a headless unit director field. An example of such systems represents nematic LC or nanotubes. We further introduce impurities of concentration p, which impose the random anisotropy field-type disorder to directors. We study the domain-type pattern of molecules as a function of p, anchoring strength w between a neighboring director and impurity, temperature, history of samples. In simulations we quenched the directors either from the random or homogeneous initial configuration. Our results show that a history of system strongly influences: i) the average domain coherence length; and ii) the range of ordering in the system. In the random case the obtained order is always short ranged (SR). On the contrary, in the homogeneous case, SR is obtained only for strong enough anchoring and large enough concentration p. In other cases, the ordering is either of quasi long range (QLR) or of long range (LR). We further studied memory effects for the random initial configuration. With increasing external ordering field B either QLR or LR is realized.

Developing Examination Management System: Senior Capstone Project, a Case Study

This paper presents the result of three senior capstone projects at the Department of Computer Engineering, Prince of Songkla University, Thailand. These projects focus on developing an examination management system for the Faculty of Engineering in order to manage the examination both the examination room assignments and the examination proctor assignments in each room. The current version of the software is a web-based application. The developed software allows the examination proctors to select their scheduled time online while each subject is assigned to each available examination room according to its type and the room capacity. The developed system is evaluated using real data by prospective users of the system. Several suggestions for further improvements are given by the testers. Even though the features of the developed software are not superior, the developing process can be a case study for a projectbased teaching style. Furthermore, the process of developing this software can show several issues in developing an educational support application.

Dynamic Performance Indicators for Aged-Care Construction Projects

Key performance indicators (KPIs) are used for post result evaluation in the construction industry, and they normally do not have provisions for changes. This paper proposes a set of dynamic key performance indicators (d-KPIs) which predicts the future performance of the activity being measured and presents the opportunity to change practice accordingly. Critical to the predictability of a construction project is the ability to achieve automated data collection. This paper proposes an effective way to collect the process and engineering management data from an integrated construction management system. The d-KPI matrix, consisting of various indicators under seven categories, developed from this study can be applied to close monitoring of the development projects of aged-care facilities. The d-KPI matrix also enables performance measurement and comparison at both project and organization levels.

Decision Support Framework in Managerial Learning Environment for Organization

In the open space of decision support system the mental impression of a manager-s decision has been the subject of large importance than the ordinary famous one, when helped by decision support system. Much of this study is an attempt to realize the relation of decision support system usage and decision outcomes that governs the system. For example, several researchers have proposed so many different models to analyze the linkage between decision support system processes and results of decision making. This study draws the important relation of manager-s mental approach with the use of decision support system. The findings of this paper are theoretical attempts to provide Decision Support System (DSS) in a way to exhibit and promote the learning in semi structured area. The proposed model shows the points of one-s learning improvements and maintains a theoretical approach in order to explore the DSS contribution in enhancing the decision forming and governing the system.

Uniformly Persistence of a Predator-Prey Model with Holling III Type Functional Response

In this paper, a predator-prey model with Holling III type functional response is studied. It is interesting that the system is always uniformly persistent, which yields the existence of at least one positive periodic solutions for the corresponding periodic system. The result improves the corresponding ones in [11]. Moreover, an example is illustrated to verify the results by simulation.

Systems with Queueing and their Simulation

In the queueing theory, it is assumed that customer arrivals correspond to a Poisson process and service time has the exponential distribution. Using these assumptions, the behaviour of the queueing system can be described by means of Markov chains and it is possible to derive the characteristics of the system. In the paper, these theoretical approaches are presented on several types of systems and it is also shown how to compute the characteristics in a situation when these assumptions are not satisfied

Scenario Recognition in Modern Building Automation

Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.

Measurement of Systemic Power Efficiency of Microwave Heating Application

Microwave heating process has been developed about sixty years while measurement system has also progressed. Because of irradiation of high frequency of microwave, researchers have been utilized many costly technical instrument measuring parameters to evaluate the performance of microwave heating system. Therefore, this paper is intended to present an easier and feasible efficiency measurement method. It can help inspecting efficiency of microwave heating system with good accuracy, while the method can also give reference to optimizing procedure for microwave heating system for various load material

Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

SFCL Location Selection Considering Reliability Indices

The fault current levels through the electric devices have a significant impact on failure probability. New fault current results in exceeding the rated capacity of circuit breaker and switching equipments and changes operation characteristic of overcurrent relay. In order to solve these problems, SFCL (Superconducting Fault Current Limiter) has rising as one of new alternatives so as to improve these problems. A fault current reduction differs depending on installed location. Therefore, a location of SFCL is very important. Also, SFCL decreases the fault current, and it prevents surrounding protective devices to be exposed to fault current, it then will bring a change of reliability. In this paper, we propose method which determines the optimal location when SFCL is installed in power system. In addition, the reliability about the power system which SFCL was installed is evaluated. The efficiency and effectiveness of this method are also shown by numerical examples and the reliability indices are evaluated in this study at each load points. These results show a reliability change of a system when SFCL was installed.

Transmission Mains Earthing Design: Under Ground to Over Head Pole Transition

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. New or upgraded HV infrastructure has safety implications since Transmission mains usually occupy the same easement in the vicinity of neighbouring residents. Transmission mains consist of underground (UG) and overhead (OH) sections and the transition between the UG and OH section is known as the UGOH pole. The existence of two transmission mains in the same easement can dictate to resort to more complicated earthing design in order to mitigate the effect of AC interference, and in some cases it can also necessitates completing a Split Study of the system. This paper provides an overview of the AC interference, Split Study and the earthing of an underground feeder including the UGOH pole .In addition, this paper discusses the use of different link boxes on the UG feeder and presents a case study that represent a clear example of the Ac interference and Split factor. Finally, a few recommendations are provided to achieve a safety zone in the area beyond the boundary of the HV system.