Effects of Mold Surface Roughness on Compressible Flow of Micro-Injection Molding

Polymer melt compressibility and mold surface roughness, which are generally ignored during the filling stage of the conventional injection molding, may become increasingly significant in micro injection molding where the parts become smaller. By employing the 2.5D generalized Hele-Shaw model, we presented here the effects of polymer compressibility and mold surface roughness on mold-filling in a micro-thickness cavity. To elucidate the effects of surface roughness, numerical investigations were conducted using a cavity flat plate which has two halves with different surface roughness. This allows the comparison of flow field on two different halves under identical processing conditions but with different roughness. Results show that polymer compressibility and mold surface roughness have effects on mold filling in micro injection molding. There is in shrinkage reduction as the density is increased due to polymer melt compressibility during the filling stage.

Finger Vein Recognition using PCA-based Methods

In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.

Mobility Management Architecture for Transport System

Next generation wireless/mobile networks will be IP based cellular networks integrating the internet with cellular networks. In this paper, we propose a new architecture for a high speed transport system and a mobile management protocol for mobile internet users in a transport system. Existing mobility management protocols (MIPv6, HMIPv6) do not consider real world fast moving wireless hosts (e.g. passengers in a train). For this reason, we define a virtual organization (VO) and proposed the VO architecture for the transport system. We also classify mobility as VO mobility (intra VO) and macro mobility (inter VO). Handoffs in VO are locally managed and transparent to the CH while macro mobility is managed with Mobile IPv6. And, from the features of the transport system, such as fixed route and steady speed, we deduce the movement route and the handoff disruption time of each handoff. To reduce packet loss during handoff disruption time, we propose pre-registration scheme using pre-registration. Moreover, the proposed protocol can eliminate unnecessary binding updates resulting from sequence movement at high speed. The performance evaluations demonstrate our proposed protocol has a good performance at transport system environment. Our proposed protocol can be applied to the usage of wireless internet on the train, subway, and high speed train.

Generic Workload Management System Using Condor-Based Pilot Factory in PanDA Framework

In the current Grid environment, efficient workload management presents a significant challenge, for which there are exorbitant de facto standards encompassing resource discovery, brokerage, and data transfer, among others. In addition, the real-time resource status, essential for an optimal resource allocation strategy, is often not readily accessible. To address these issues and provide a cleaner abstraction of the Grid with the potential of generalizing into arbitrary resource-sharing environment, this paper proposes a new Condor-based pilot mechanism applied in the PanDA architecture, PanDA-PF WMS, with the goal of providing a more generic yet efficient resource allocating strategy. In this architecture, the PanDA server primarily acts as a repository of user jobs, responding to pilot requests from distributed, remote resources. Scheduling decisions are subsequently made according to the real-time resource information reported by pilots. Pilot Factory is a Condor-inspired solution for a scalable pilot dissemination and effectively functions as a resource provisioning mechanism through which the user-job server, PanDA, reaches out to the candidate resources only on demand.

Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

Vibration Attenuation in Layered and Welded Beams with Unequal Thickness

In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.

Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features

This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.

Lightweight Robotic Material Handling in Photovoltaic Module Manufacturing-Silicon Wafer and Thin Film Technologies

Today, the central role of industrial robots in automation in general and in material handling in particular is crystal clear. Based on the current status of Photovoltaics and by focusing on lightweight material handling, PV industry has turned into a potential candidate for introducing a fresh “pick and place" robot technology. Thus, to examine the industry needs in this regard, firstly the best suited applications for such robotic automation,and then the essential prerequisites in PV industry should be identified. The objective of this paper is to present holistic views on the industry trends, general automation status and existing challenges facing lightweight robotic material handling in PV Silicon Wafer and Thin Film technologies. The results of this study show that currently no uniform pick and place solution prevails among PV Silicon Wafer manufacturers and the industry calls for a new robot solution to satisfy its needs in new directions.

An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Real-time ROI Acquisition for Unsupervised and Touch-less Palmprint

In this paper we proposed a novel method to acquire the ROI (Region of interest) of unsupervised and touch-less palmprint captured from a web camera in real-time. We use Viola-Jones approach and skin model to get the target area in real time. Then an innovative course-to-fine approach to detect the key points on the hand is described. A new algorithm is used to find the candidate key points coarsely and quickly. In finely stage, we verify the hand key points with the shape context descriptor. To make the user much comfortable, it can process the hand image with different poses, even the hand is closed. Experiments show promising result by using the proposed method in various conditions.

Communication Engineering Curriculum (Past, Present and the Future)

At present time, competition, unpredictable fluctuations have made communication engineering education in the global sphere really difficult. Confront with new situation in the engineering education sector. Communication engineering education has to be reformed and ready to use more advanced technologies. We realized that one of the general problems of student`s education is that after graduating from their universities, they are not prepared to face the real life challenges and full skilled to work in industry. They are prepared only to think like engineers and professionals but they also need to possess some others non-technical skills. In today-s environment, technical competence alone is not sufficient for career success. Employers want employees (graduate engineers) who have good oral and written communication (soft) skills. It does require for team work, business awareness, organization, management skills, responsibility, initiative, problem solving and IT competency. This proposed curriculum brings interactive, creative, interesting, effective learning methods, which includes online education, virtual labs, practical work, problem-based learning (PBL), and lectures given by industry experts. Giving short assignments, presentations, reports, research papers and projects students can significantly improve their non-technical skills. Also, we noticed the importance of using ICT technologies in engineering education which used by students and teachers, and included that into proposed teaching and learning methods. We added collaborative learning between students through team work which builds theirs skills besides course materials. The prospective on this research that we intent to update communication engineering curriculum in order to get fully constructed engineer students to ready for real industry work.

A Study of Efficiency and Prioritize of Eurasian Logistics Network

Recently, Northeast Asia has become one of the three largest trade areas, covering approximately 30% of the total trade volume of the world. However, the distribution facilities are saturated due to the increase in the transportation volume within the area and with the European countries. In order to accommodate the increase of the transportation volume, the transportation networking with the major countries in Northeast Asia and Europe is absolutely necessary. The Eurasian Logistics Network will develop into an international passenger transportation network covering the Northeast Asian region and an international freight transportation network connecting across Eurasia Continent. This paper surveys the changes and trend of the distribution network in the Eurasian Region according to the political, economic and environmental changes of the region, analyses the distribution network according to the changes in the transportation policies of the related countries, and provides the direction of the development of composite transportation on the basis of the present conditions of transportation means. The transportation means optimal for the efficiency of transportation system are suggested to be train ferries, sea & rail or sea & rail & sea. It is suggested to develop diversified composite transportation means and routes within the boundary of international cooperation system.

Application of Functional Network to Solving Classification Problems

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Rating Charts of R-22 Alternatives Flow through Adiabatic Capillary Tubes

Drop-in of R-22 alternatives in refrigeration and air conditioning systems requires a redesign of system components to improve system performance and reliability with the alternative refrigerants. The present paper aims at design adiabatic capillary tubes for R-22 alternatives such as R-417A, R-422D and R-438A. A theoretical model has been developed and validated with the available experimental data from literature for R-22 over a wide range of both operating and geometrical parameters. Predicted lengths of adiabatic capillary tube are compared with the lengths of the capillary tube needed under similar experimental conditions and majority of predictions are found to be within 4.4% of the experimental data. Hence, the model has been applied for R-417A, R- 422D and R-438A and capillary tube selection charts and correlations have been computed. Finally a comparison between the selected refrigerants and R-22 has been introduced and the results showed that R-438A is the closest one to R-22.

Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup

Bacterial cellulose, a biopolysaccharide, is produced by the bacterium, Gluconacetobacter xylinus. Static batch fermentation for bacterial cellulose production was studied in sucrose and date syrup solutions (Bx. 10%) at 28 °C using G. xylinus (PTCC, 1734). Results showed that the maximum yields of bacterial cellulose (BC) were 4.35 and 1.69 g/l00 ml for date syrup and sucrose medium after 336 hours fermentation period, respectively. Comparison of FTIR spectrum of cellulose with BC indicated appropriate coincidence which proved that the component produced by G. xylinus was cellulose. Determination of the area under X-ray diffractometry patterns demonstrated that the crystallinity amount of cellulose (83.61%) was more than that for the BC (60.73%). The scanning electron microscopy imaging of BC and cellulose were carried out in two magnifications of 1 and 6K. Results showed that the diameter ratio of BC to cellulose was approximately 1/30 which indicated more delicacy of BC fibers relative to cellulose.

Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces

Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.

A Review on WEB Resources in Teaching of Geotechnical Engineering

The use of computer hardware and software in education and training dates to the early 1940s, when American researchers developed flight simulators which used analog computers to generate simulated onboard instrument data.Computer software is widely used to help engineers and undergraduate student solve their problems quickly and more accurately. This paper presents the list of computer software in geotechnical engineering.

Limitations of the Analytic Hierarchy Process Technique with Respect to Geographically Distributed Stakeholders

The selection of appropriate requirements for product releases can make a big difference in a product success. The selection of requirements is done by different requirements prioritization techniques. These techniques are based on pre-defined and systematic steps to calculate the requirements relative weight. Prioritization is complicated by new development settings, shifting from traditional co-located development to geographically distributed development. Stakeholders, connected to a project, are distributed all over the world. These geographically distributions of stakeholders make it hard to prioritize requirements as each stakeholder have their own perception and expectations of the requirements in a software project. This paper discusses limitations of the Analytical Hierarchy Process with respect to geographically distributed stakeholders- (GDS) prioritization of requirements. This paper also provides a solution, in the form of a modified AHP, in order to prioritize requirements for GDS. We will conduct two experiments in this paper and will analyze the results in order to discuss AHP limitations with respect to GDS. The modified AHP variant is also validated in this paper.

Political Finance in Africa: Ethiopia as a Case Study

Since 1991 Ethiopia has officially adopted multi-party democracy. At present, there are 89 registered political parties in the country. Though political parties play an important role in the functioning of a democratic government, how to fund them is an issue of major concern. Political parties and individual candidates running for political office have to raise funds for election campaigns, and to survive as political candidates. The aim of this paper is to examine party funding problems in Africa by taking the case of Ethiopia as an example. The paper also evaluates the motives of local and international donors in giving financial and material support to political parties in emerging democracies and assesses the merits and de-merits of their donations.

A Logic Approach to Database Dynamic Updating

We introduce a logic-based framework for database updating under constraints. In our framework, the constraints are represented as an instantiated extended logic program. When performing an update, database consistency may be violated. We provide an approach of maintaining database consistency, and study the conditions under which the maintenance process is deterministic. We show that the complexity of the computations and decision problems presented in our framework is in each case polynomial time.