Quality Factor Variation with Transform Order in Fractional Fourier Domain

Fractional Fourier Transform is a powerful tool, which is a generalization of the classical Fourier Transform. This paper provides a mathematical relation relating the span in Fractional Fourier domain with the amplitude and phase functions of the signal, which is further used to study the variation of quality factor with different values of the transform order. It is seen that with the increase in the number of transients in the signal, the deviation of average Fractional Fourier span from the frequency bandwidth increases. Also, with the increase in the transient nature of the signal, the optimum value of transform order can be estimated based on the quality factor variation, and this value is found to be very close to that for which one can obtain the most compact representation. With the entire mathematical analysis and experimentation, we consolidate the fact that Fractional Fourier Transform gives more optimal representations for a number of transform orders than Fourier transform.

Hardness Variations as Affected by Bar Diameter of AISI 4140 Steel

Hardness of the widely used structural steel is of vital importance since it may help in the determination of many mechanical properties of a material under loading situations. In order to obtain reliable information for design, properties homogeneity should be validated. In the current study the hardness variation over the different diameters of the same AISI 4140 bar is investigated. Measurements were taken on the two faces of the stock at equally spaced eight sectors and fifteen layers. Statistical and graphical analysis are performed to asses the distribution of hardness measurements over the specified area. Hardness measurements showed some degree of dispersion with about ± 10% of its nominal value provided by manufacturer. Hardness value is found to have a slight decrease trend as the diameter is reduced. However, an opposite behavior is noticed regarding the sequence of the sector indicating a nonuniform distribution over the same area either on the same face or considering the corresponding sector on the other face (cross section) of the same material bar.

Development of a Project Selection Method on Information System Using ANP and Fuzzy Logic

Project selection problems on management information system (MIS) are often considered a multi-criteria decision-making (MCDM) for a solving method. These problems contain two aspects, such as interdependencies among criteria and candidate projects and qualitative and quantitative factors of projects. However, most existing methods reported in literature consider these aspects separately even though these two aspects are simultaneously incorporated. For this reason, we proposed a hybrid method using analytic network process (ANP) and fuzzy logic in order to represent both aspects. We then propose a goal programming model to conduct an optimization for the project selection problems interpreted by a hybrid concept. Finally, a numerical example is conducted as verification purposes.

A Forecast Model for Projecting the Amount of Hazardous Waste

The objective of the paper is to develop the forecast model for the HW flows. The methodology of the research included 6 modules: historical data, assumptions, choose of indicators, data processing, and data analysis with STATGRAPHICS, and forecast models. The proposed methodology was validated for the case study for Latvia. Hypothesis on the changes in HW for time period of 2010-2020 have been developed and mathematically described with confidence level of 95.0% and 50.0%. Sensitivity analysis for the analyzed scenarios was done. The results show that the growth of GDP affects the total amount of HW in the country. The total amount of the HW is projected to be within the corridor of – 27.7% in the optimistic scenario up to +87.8% in the pessimistic scenario with confidence level of 50.0% for period of 2010-2020. The optimistic scenario has shown to be the least flexible to the changes in the GDP growth.

Public Transport Reform in Indonesia, A Case Study in the City of Yogyakarta

The provision of urban public transport in Indonesia is not free of problems. Some of the problems include: an overall lack of capacity, lack of quality and choice, severe traffic congestions and insufficient fund to renew and repair vehicles. Generally, the comfort and quality of the city bus is poor, and many of the vehicles are dilapidated and dirty. Surveys were carried out in the city of Yogyakarta, by counting city bus vehicles and occupancies, interviewing the bus passengers, drivers and institutional staffs, who involve in public transport management. This paper will then analyze the possible plan to develop the public transport system to become more attractive and to improve the public transport management. The short, medium and long term plans are analyzed, to find the best solutions. Some constraints such as social impacts and financial impact are also taken into accounts.

Lagrange-s Inversion Theorem and Infiltration

Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions.

The Impact of Post-Disaster Relocation on Community Solidarity: The Case of Post-Disaster Reconstruction after Typhoon Morakot in Taiwan

Typhoon Morakot hit Taiwan in 2009 and caused severe damages. The government employs a compulsory relocation strategy for post-disaster reconstruction. This study analyzes the impact of this strategy on community solidarity. It employs a multiple approach for data collection, including semi-structural interview, secondary data, and documentation. The results indicate that the government-s strategy for distributing housing has led to conflicts within the communities. In addition, the relocating process has stimulated tensions between victims of the disaster and those residents whose lands were chosen to be new sites for relocation. The government-s strategy of “collective relocation" also worsened community integration. In addition, the fact that a permanent housing community may accommodate people from different places also posts challenge for the development of new inter-personal relations in the communities. This study concludes by emphasizing the importance of bringing social, economic and cultural aspects into consideration for post-disaster relocation..

In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm

The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.

Well-Being in Adolescence: Fitting Measurement Model

Well-being has been given special emphasis in quality of life. It involves living a meaningful, life satisfaction, stability and happiness in life. Well-being also concerns the satisfaction of physical, psychological, social needs and demands of an individual. The purpose of this study was to validate three-factor measurement model of well-being using structural equation modeling (SEM). The conceptions of well-being measured such dimensions as physical, psychological and social well-being. This study was done based on a total sample of 650 adolescents from east-coast of peninsular Malaysia. The Well-Being Scales which was adapted from [1] was used in this study. The items were hypothesized a priori to have nonzero loadings on all dimensions in the model. The findings of the SEM demonstrated that it is a good fitting model which the proposed model fits the driving theory; (x2df = 1.268; GFI = .994; CFI = .998; TLI= .996; p = .255; RMSEA = .021). Composite reliability (CR) was .93 and average variance extracted (AVE) was 58%. The model in this study fits with the sample of data and well-being is important to bring sustainable development to the mainstream.

Identity Formation and Autobiographical Memory: Two Interrelated Concepts of Development

The aim of the present paper is to investigate the interdependency among ego-identity status, autobiographical memory and cultural life story schema. The study shows considerable differences between autobiographical memory characteristics and “family script", which is typical for participants (adolescents, M age years = 17.84, SD = 1.18, N = 58), with different ego-identity statuses. Participants with diffused ego-identity status recalled fewer autobiographical memories. Additionally, this group of participants recalled fewer events from their parents- life. Participants with moratorium ego-identity status dated their first recollections to a later age than others, and recalled fewer memories relating to their childhood. Participants with achieved identity status recalled more self-defining memories and events from their parents- life. They used more functions from the autobiographical memory. There weren-t any significant differences between the foreclosed identity status group and the others. These findings support the idea of a bidirectional relation between culture, memory and self.

Solar Cell Parameters Estimation Using Simulated Annealing Algorithm

This paper presents Simulated Annealing based approach to estimate solar cell model parameters. Single diode solar cell model is used in this study to validate the proposed approach outcomes. The developed technique is used to estimate different model parameters such as generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor that govern the current-voltage relationship of a solar cell. A practical case study is used to test and verify the consistency of accurately estimating various parameters of single diode solar cell model. Comparative study among different parameter estimation techniques is presented to show the effectiveness of the developed approach.

Smart Spoiler for Race Car

A pressure-based implicit procedure to solve Navier- Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used to simulate flow around the smart and conventional flaps of spoiler under the ground effect. Cantilever beam with uniformly varying load with roller support at the free end is considered for smart flaps. The boundedness criteria for this procedure are determined from a Normalized Variable diagram (NVD) scheme. The procedure incorporates es the k -ε eddyviscosity turbulence model. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around a spoiler section with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared.

Unscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise

Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are the most useful dynamical diagnostic for chaotic systems. However, it is difficult to accurately estimate the Lyapunov exponents of chaotic signals which are corrupted by a random noise. In this work, a method for estimation of Lyapunov exponents from noisy time series using unscented transformation is proposed. The proposed methodology was validated using time series obtained from known chaotic maps. In this paper, the objective of the work, the proposed methodology and validation results are discussed in detail.

Analysis of Self Excited Induction Generator using Particle Swarm Optimization

In this paper, Novel method, Particle Swarm Optimization (PSO) algorithm, based technique is proposed to estimate and analyze the steady state performance of self-excited induction generator (SEIG). In this novel method the tedious job of deriving the complex coefficients of a polynomial equation and solving it, as in previous methods, is not required. By comparing the simulation results obtained by the proposed method with those obtained by the well known mathematical methods, a good agreement between these results is obtained. The comparison validates the effectiveness of the proposed technique.

Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk

Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.

Can Nipple Be Used as a Good Indicator of Breast in Breast Motion Research?

There were many studies on how to alleviate breast discomfort by reducing breast motion, in which nipple motion was used to represent breast motion. However, this assumption had not been experimentally validated. The aim of this paper was to experimentally validate if nipple can be used as a good indicator of breast. Seven participants (average of 24.4 years old) were recruited to walk and run on the treadmill at 5km h-1 and 10km h-1 respectively. Six markers were pasted on their bodies to collect motion data of different parts of breasts. The results of Friedman test combined with the relationship among the five markers on the same breast revealed that nipple could be used as a good indicator of breast. Wilcoxon test showed that there was no significant (P

Going beyond Social Maternage.The Principle of Brotherhood in the Community Psychology's Intervention

The aim of this paper is to study in depth some methodological aspects of social interventation, focusing on desirable passage from social maternage method to peer advocacy method. For this purpose, we intend analyze social and organizative components, that affect operator's professional action and that are part of his psychological environment, besides the physical and social one. In fact, operator's interventation should not be limited to a pure supply of techniques, nor to take shape as improvised action, but “full of good purposes".

Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph

The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.

Handover Strategies Challenges in Wireless ATM Networks

To support user mobility for a wireless network new mechanisms are needed and are fundamental, such as paging, location updating, routing, and handover. Also an important key feature is mobile QoS offered by the WATM. Several ATM network protocols should be updated to implement mobility management and to maintain the already ATM QoS over wireless ATM networks. A survey of the various schemes and types of handover is provided. Handover procedure allows guarantee the terminal connection reestablishment when it moves between areas covered by different base stations. It is useful to satisfy user radio link transfer without interrupting a connection. However, failure to offer efficient solutions will result in handover important packet loss, severe delays and degradation of QoS offered to the applications. This paper reviews the requirements, characteristics and open issues of wireless ATM, particularly with regard to handover. It introduces key aspects of WATM and mobility extensions, which are added in the fixed ATM network. We propose a flexible approach for handover management that will minimize the QoS deterioration. Functional entities of this flexible approach are discussed in order to achieve minimum impact on the connection quality when a MT crosses the BS.