Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Removal of a Reactive Dye by Adsorption Utilizing Waste Aluminium Hydroxide Sludge as an Adsorbent

Removal of a reactive dye (Reactive blue 4) by adsorption utilizing waste aluminium hydroxide sludge as an adsorbent was investigated. The removal of the dye was optimized using response surface methodology (RSM). In the RSM experiments; initial dye concentration, adsorbent concentration and contact time were critical parameters. RSM experiments were performed at the range of initial dye concentration 31.82-368.18 mg/L, adsorbent concentration 3.18-36.82 g/L, contact time 15.82- 56.18 h. Optimum initial dye concentration, adsorbent concentration and contact time were obtained as 108.83 mg/L, 29.36 g/L and 33.57 h respectively. At these conditions, maximum removal of the dye was obtained as 95%. The experiments were performed at the optimum conditions to verify these results and the same results were obtained.