Optimization of New 25A-size Metal Gasket Design Based on Contact Width Considering Forming and Contact Stress Effect

At the previous study of new metal gasket, contact width and contact stress were important design parameter for optimizing metal gasket performance. However, the range of contact stress had not been investigated thoroughly. In this study, we conducted a gasket design optimization based on an elastic and plastic contact stress analysis considering forming effect using FEM. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. The optimum design based on an elastic and plastic contact stress was founded. Final evaluation was determined by helium leak quantity to check leakage performance of both type of gaskets. The helium leak test shows that a gasket based on the plastic contact stress design better than based on elastic stress design.

A Comprehensive Study on Phytoextractive Potential of Sri Lankan Mustard (Brassica Juncea (L.) Czern. and Coss) Genotypes

Heavy metal pollution is an environmental concern. Phytoremediation is a low-cost, environmental-friendly approach to solve this problem. Mustard has the potential in reducing heavy metal contents in soils. Among mustard (Brassica juncea (L.) Czern & Coss) genotypes in Sri Lanka, accessions 7788, 8831 and 5088 give significantly a high yield. Therefore, present study was conducted to quantify the phytoextractive potential among these local mustard accessions and to assess the interaction of heavy metals, Pb, Co, Mn on phytoextraction. A pot experiment was designed with acid washed sand (quartz) and a series of heavy metal solutions of 0, 25, 50, 75 and 100 μg/g. Experiment was carried out with factorial experimental design. Mustard accessions were tolerant to heavy metals and could be successfully used in removal of Pb, Co and Mn and they are capable of accumulating significant quantities of heavy metals in vegetative and reproductive organs. The order of the accumulative potential of Pb, Co and Mn in mustard accessions is, root > shoot >seed.

Heavy Metal Contamination of the Landscape at the ─¢ubietová Deposit (Slovakia)

The heavy metal contamination of the technogenous sediments and soils at the investigated dump-field show irregular planar distribution. Also the heavy metal content in the surface water, drainage water and in the groundwater was studied both in the dry as well as during the rainy periods. The cementation process causes substitution of iron by copper. Natural installation and development of plant species was observed at the old mine waste dumps, specific to the local chemical conditions such as low content of essential nutrients and high content of heavy metals. The individual parts of the plant tissues (roots, branches/stems, leaves/needles, flowers/ fruits) are contaminated by heavy metals and tissues are damaged differently, respectively.

Study of Mordenite ZSM-5 and NaY Zeolites,Containing Cr, Cs, Zn, Ni, Co, Li, Mn, to Control Hydrocarbon Cold-Start Emission

The implementation of Super-Ultra Low Emission Vehicle standards requires more efficient exhaust gas purification. To increase the efficiency of exhaust gas purification, an the adsorbent capable of holding hydrocarbons up to 250-300 ОС should be developed. The possibility to design such adsorbents by modification of zeolites of mordenite type, ZSM-5 and NaY, using different metals cations has been studied. It has been shown that introducing Cr, Cs, Zn, Ni, Co, Li, Mn in zeolites results in modification of the toluene TPD and toluene sorption capacity. 5%LiZSM-5 zeolite exhibits the most attractive TPD curve, with toluene desorption temperature ranging from 250 to 350ОС. The sorption capacity of 5%Li-ZSM-5 is 0.4 mmol/g. NaY zeolite has the highest sorption capacity, up to 2 mmol/g, and holds toluene up to 350ОС, but at 120ОС toluene desorption starts, which is not desirable, since the adsorbent of cold start hydrocarbons should retain them until 250-300ОС. Therefore 5%LiZSM-5 zeolite was found to be the most promising to control the cold-start hydrocarbon emissions among the samples studied.

Effects of Temperature-Dependent Material Properties on Stress and Temperature in Cracked Metal Plate under Electric Current Load

Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.

Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Assessment of Sediment Quality According To Heavy Metal Status in the West Port of Malaysia

Eight heavy metals (Cu, Cr, Zn, Hg, Pb, Cd, Ni and As) were analyzed in sediment samples in the dry and wet seasons from November 2009 to October 2010 in West Port of Peninsular Malaysia. The heavy metal concentrations (mg/kg dry weight) were ranged from 23.4 to 98.3 for Zn, 22.3 to 80 for Pb, 7.4 to 27.6 Cu, 0.244 to 3.53 for Cd, 7.2 to 22.2 for Ni, 20.2 to 162 for As, 0.11 to 0.409 for Hg and 11.5 to 61.5 for Cr. Metals concentrations in dry season were higher than the rainy season except in cupper and chromium. Analysis of variance with Statistical Analysis System (SAS) shows that the mean concentration of metals in the two seasons (α level=0.05) are not significantly different which shows that the metals were held firmly in the matrix of sediment. Also there are significant differences between control point station with other stations. According to the Interim Sediment Quality guidelines (ISQG), the metal concentrations are moderately polluted, except in arsenic which shows the highest level of pollution.

Simulation and Optimization of Mechanisms made of Micro-molded Components

The Institute of Product Development is dealing with the development, design and dimensioning of micro components and systems as a member of the Collaborative Research Centre 499 “Design, Production and Quality Assurance of Molded micro components made of Metallic and Ceramic Materials". Because of technological restrictions in the miniaturization of conventional manufacturing techniques, shape and material deviations cannot be scaled down in the same proportion as the micro parts, rendering components with relatively wide tolerance fields. Systems that include such components should be designed with this particularity in mind, often requiring large clearance. On the end, the output of such systems results variable and prone to dynamical instability. To save production time and resources, every study of these effects should happen early in the product development process and base on computer simulation to avoid costly prototypes. A suitable method is proposed here and exemplary applied to a micro technology demonstrator developed by the CRC499. It consists of a one stage planetary gear train in a sun-planet-ring configuration, with input through the sun gear and output through the carrier. The simulation procedure relies on ordinary Multi Body Simulation methods and subsequently adds other techniques to further investigate details of the system-s behavior and to predict its response. The selection of the relevant parameters and output functions followed the engineering standards for regular sized gear trains. The first step is to quantify the variability and to reveal the most critical points of the system, performed through a whole-mechanism Sensitivity Analysis. Due to the lack of previous knowledge about the system-s behavior, different DOE methods involving small and large amount of experiments were selected to perform the SA. In this particular case the parameter space can be divided into two well defined groups, one of them containing the gear-s profile information and the other the components- spatial location. This has been exploited to explore the different DOE techniques more promptly. A reduced set of parameters is derived for further investigation and to feed the final optimization process, whether as optimization parameters or as external perturbation collective. The 10 most relevant perturbation factors and 4 to 6 prospective variable parameters are considered in a new, simplified model. All of the parameters are affected by the mentioned production variability. The objective functions of interest are based on scalar output-s variability measures, so the problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development path of a method to design and optimize complex micro mechanisms composed of wide tolerated elements accounting for the robustness and reliability of the systems- output.

A Study of Gas Metal Arc Welding Affecting Mechanical Properties of Austenitic Stainless Steel AISI 304

The objective of this research was to study influence parameters affecting to mechanical property of austenitic stainless steel grade 304 (AISI 304) with Gas Metal Arc Welding (GMAW). The research was applying factorial design experiment, which have following interested parameters: welding current at 80, 90, and 100 Amps, welding speeds at 250, 300, and 350 mm/min, and shield gas of 75% Ar + 25% CO2, 70% Ar + 25% CO2 + 5% O2 and 69.5% Ar + 25% CO2 + 5% O2 + 0.5% He gas. The study was done in following aspects: ultimate tensile strength and elongation. A research study of ultimate tensile strength found that main factor effect, which had the highest strength to AISI 304 welding was shield gas of 70% Ar + 25% CO2 + 5% O2 at average of 954.81 N/mm2. Result of the highest elongation was showed significantly different at interaction effect between shield gas of 69.5%Ar+25%CO2+5%O2+.5%He and welding speed at 250 mm/min at 47.94%.

Operational risks Classification for Information Systems with Service-Oriented Architecture (Including Loss Calculation Example)

This article presents the results of a study conducted to identify operational risks for information systems (IS) with service-oriented architecture (SOA). Analysis of current approaches to risk and system error classifications revealed that the system error classes were never used for SOA risk estimation. Additionally system error classes are not normallyexperimentally supported with realenterprise error data. Through the study several categories of various existing error classifications systems are applied and three new error categories with sub-categories are identified. As a part of operational risks a new error classification scheme is proposed for SOA applications. It is based on errors of real information systems which are service providers for application with service-oriented architecture. The proposed classification approach has been used to classify SOA system errors for two different enterprises (oil and gas industry, metal and mining industry). In addition we have conducted a research to identify possible losses from operational risks.

Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Microstructure and Mechanical Properties of Duplex Stainless steel for Anchor Bolt Application

Most buildings have been using anchor bolts commonly for installing outdoor advertising structures. Anchor bolts of common carbon steel are widely used and often installed indiscriminately by inadequate installation standards. In the area where strong winds frequently blow, falling accidents of outdoor advertising structures can occur and cause a serious disaster, which is very dangerous and to be prevented. In this regard, the development of high-performance anchor bolts is urgently required. In the present study, 25Cr-8Ni-1.5Si-1Mn-0.4C alloy was produced by traditional vacuum induction melting (VIM) for the application of anchor bolt. The alloy composition is revealed as a duplex microstructure from thermodynamic phase analysis by FactSage® and confirmed by metallographic experiment. Addition of Nitrogen to the alloy was found to reduce the ferritic phase domain and significantly increase the hardness and the tensile strength. Microstructure observation revealed mixed structure of austenite and ferrite with fine carbide distributed along the grain and phase boundaries.

Assessment of Sediment Quality in the West Port Based On the Index Analysis Approach

The coastal sediments of West Port of Malaysia was monitored from Nov. 2009 to Oct. 2010 to assess spatial distribution of heavy metals As, Cu, Cd, Cr, Hg, Ni, Zn and Pb. Sediment samples were collected from 10 stations in dry and rainy season in West Port. The range concentrations measured (Mg/g dry weight ) were from 23.4 to 98.3 for Zn, 22.3 to 80 for Pb, 7.4 to 27.6 Cu, 0.244 to 3.53 for Cd, 7.2 to 22.2 for Ni, 20.2 to 162 for As, 0.11 to 0.409 for Hg and 11.5 to 61.5 for Cr. The geochemical indexes used in this study were Geoaccumulation (Igeo), Contamination Factor (CF) and Pollution Load Index (PLI); these indexes were used to evaluate the levels of sediment contaminations. The results of these indexes show that, the status of West Port sediment quality are moderately polluted by heavy metals except in arsenic which shows the high level of pollution.

Parametric Investigation of Diode and CO2 Laser in Direct Metal Deposition of H13 Tool Steel on Copper Substrate

In the present investigation, H13 tool steel has been deposited on copper alloy substrate using both CO2 and diode laser. A detailed parametric analysis has been carried out in order to find out optimum processing zone for coating defect free H13 tool steel on copper alloy substrate. Followed by parametric optimization, the microstructure and microhardness of the deposited clads have been evaluated. SEM micrographs revealed dendritic microstructure in both clads. However, the microhardness of CO2 laser deposited clad was much higher compared to diode laser deposited clad.

Tolerance of Heavy Metals by Gram Positive Soil Bacteria

With the intention of screening for heavy metal tolerance, a number of bacteria were isolated and characterized from a pristine soil. Two Gram positive isolates were identified as Paenibacillus sp. and Bacillus thuringeinsis. Tolerance of Cd2+, Cu2+ and Zn2+ by these bacteria was studied and found that both bacteria were highly sensitive to Cu2+ compared to other two metals. Both bacteria showed the same pattern of metal tolerance in the order Zn+ > Cd2+ > Cu2+. When the metal tolerance in both bacteria was compared, Paenibacillus sp. showed the highest sensitivity to Cu2+ where as B. thuringiensis showed highest sensitivity to Cd2+ and Zn2+ .These findings revealed the potential of Paenibacillus sp. in developing a biosensor to detect Cu2+ in environmental samples.

An Empirical Model to Calculate the Threads Stripping of a Bolt Installed in a Tapped Part

To determine the length of engagement threads of a bolt installed in a tapped part in order to avoid the threads stripping remains a very current problem in the design of the thread assemblies. It does not exist a calculation method formalized for the cases where the bolt is screwed directly in a ductile material. In this article, we study the behavior of the threads stripping of a loaded assembly by using a modelling by finite elements and a rupture criterion by damage. This modelling enables us to study the different parameters likely to influence the behavior of this bolted connection. We study in particular, the influence of couple of materials constituting the connection, of the bolt-s diameter and the geometrical characteristics of the tapped part, like the external diameter and the length of engagement threads. We established an experiments design to know the most significant parameters. That enables us to propose a simple expression making possible to calculate the resistance of the threads whatever the metallic materials of the bolt and the tapped part. We carried out stripping tests in order to validate our model. The estimated results are very close to those obtained by the tests.

Laser Forming of Titanium and Its Alloys – An Overview

Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.

Transport and Fate of Copper in Soils

The presence of toxic heavy metals in industrial effluents is one of the serious threats to the environment. Heavy metals such as Cadmium, Chromium, Lead, Nickel, Zinc, Mercury, Copper, Arsenic are found in the effluents of industries such as foundries, electroplating, petrochemical, battery manufacturing, tanneries, fertilizer, dying, textiles, metallurgical and metal finishing. Tremendous increase of industrial copper usage and its presence in industrial effluents has lead to a growing concern about the fate and effects of Copper in the environment. Percolation of industrial effluents through soils leads to contamination of ground water and soils. The transport of heavy metals and their diffusion into the soils has therefore, drawn the attention of the researchers. In this study, an attempt has been made to delineate the mechanisms of transport and fate of copper in terrestrial environment. Column studies were conducted using perplex glass square column of dimension side 15 cm and 1.35 m long. The soil samples were collected from a natural drain near Mohali (India). The soil was characterized to be poorly graded sandy loam. The soil was compacted to the field dry density level of about 1.6 g/cm3. Break through curves for different depths of the column were plotted. The results of the column study indicated that the copper has high tendency to flow in the soils and fewer tendencies to get absorbed on the soil particles. The t1/2 estimates obtained from the studies can be used for design copper laden wastewater disposal systems.

Incorporation Mechanism of Stabilizing Simulated Lead-Laden Sludge in Aluminum-Rich Ceramics

This study investigated a strategy of blending lead-laden sludge and Al-rich precursors to reduce the release of metals from the stabilized products. Using PbO as the simulated lead-laden sludge to sinter with γ-Al2O3 by Pb:Al molar ratios of 1:2 and 1:12, PbAl2O4 and PbAl12O19 were formed as final products during the sintering process, respectively. By firing the PbO + γ-Al2O3 mixtures with different Pb/Al molar ratios at 600 to 1000 °C, the lead transformation was determined through X-ray diffraction (XRD) data. In Pb/Al molar ratio of 1/2 system, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed above 750 °C. An intermediate phase, Pb9Al8O21, was detected in the temperature range of 800-900 °C. However, different incorporation behavior for sintering PbO with Al-rich precursors at a Pb/Al molar ratio of 1/12 was observed during the formation of PbAl12O19 in this system. In the sintering process, both temperature and time effect on the formation of PbAl2O4 and PbAl12O19 phases were estimated. Finally, a prolonged leaching test modified from the U.S. Environmental Protection Agency-s toxicity characteristic leaching procedure (TCLP) was used to evaluate the durability of PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases. Comparison for the leaching results of the four phases demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack.

Realization of Design Features for Linear Flow Splitting in NX 6

Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.