A Comprehensive Study on Phytoextractive Potential of Sri Lankan Mustard (Brassica Juncea (L.) Czern. and Coss) Genotypes

Heavy metal pollution is an environmental concern. Phytoremediation is a low-cost, environmental-friendly approach to solve this problem. Mustard has the potential in reducing heavy metal contents in soils. Among mustard (Brassica juncea (L.) Czern & Coss) genotypes in Sri Lanka, accessions 7788, 8831 and 5088 give significantly a high yield. Therefore, present study was conducted to quantify the phytoextractive potential among these local mustard accessions and to assess the interaction of heavy metals, Pb, Co, Mn on phytoextraction. A pot experiment was designed with acid washed sand (quartz) and a series of heavy metal solutions of 0, 25, 50, 75 and 100 μg/g. Experiment was carried out with factorial experimental design. Mustard accessions were tolerant to heavy metals and could be successfully used in removal of Pb, Co and Mn and they are capable of accumulating significant quantities of heavy metals in vegetative and reproductive organs. The order of the accumulative potential of Pb, Co and Mn in mustard accessions is, root > shoot >seed.




References:
[1] O. D. E. Salt, & U. Kramer. Mechanisms of metal hyperaccumulation in
plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic
metals: Using plants to clean-up the environment. New York: Wiley.
2000. pp. 231-246.
[2] A. J. M Baker, & S. M. Whiting. In Search for the Holy Grail-another
step in understanding metal hyper-accumulation? New Phytologist
vol.155, pp. 1-7, 2002.
[3] Rajakaruna, N., Tompkins, K. M. & P. G. Pavicecevic.
Phytoremediation: An affordable green technology for the clean up of
metal-contaminated sites in Sri Lanka. Ceylon Journal of Science (Bio.
Sci.) vol 35, pp. 25-39, 2006..
[4] A. Marques, A. O. S. S. Rangel & P. M. L. Castro. Remediation of
Heavy Metal Contaminated Soils: Phytoremediation as a Potentially
Promising Clean-up Technology. Critical Reviews in Environmental
Science and Technology, vol. 39, pp. 622-654, 2009.
[5] P. B. A. N. Kumar, V. Dushenkov, H. Motto & I. Raskin, I.
Phytoextraction: the use of plants to remove heavy metals from soils.
Environmental Science and Technology, vol. 29, pp.1232-1238, 1995.
[6] S. D. Cunningham & D. W. Ow. Promises and prospects of
phytoremediation. Plant Physiology vol. 110, pp. 715-719, 1996.
[7] M. J. Blaylock, D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman,
Y. Kapulink, B. D. Ensley, & I. Raskin. Enhanced accumulation of Pb
in Indian mustard by soil-applied chelating agents. Environmental
Science and Technology, vol. 31, pp 856-860, 1997.
[8] S. P. McGrath. Phytoextraction for soil remediation. In R. R. Brooks
(Ed.), Plants that hyperaccumulate heavy metals: Their role in
phytoremediation, microbiology, archaeology, mineral exploration and
phytomining. CAB, New York, pp. 261-288, 1998.
[9] S. D. Ebbs, M. M. Lasat, D. J. Brandy, J. Cornish, R. Gordon & L. V.
Kochian. Heavy metals in the environment: Phytoextraction of cadmium
and zinc from a contaminated soil. Journal of Environmental Quality
vol. 26, pp.1424-1430, 1997.
[10] J. W. Huang, J. Chen & S. D, Cunningham. Phytoextraction of lead
from contaminated soils. In: E. L. Kruger, T. A. Anderson, & J. R. Coats
(Eds.), Phytoremediation of soil and water contaminants. Washington,
DC: American Chemical Society. pp. 283-298, 1997.
[11] World Health Organization. Health as a cross-cutting issue in dialogues
on water for food and the environment. Report for an international
workshop. http://whqlibdoc.who.int/2004/WHO_SDE_WSH_04.02.pdf,
2003.
[12] N. I. G. J. Bandara. Water and waste water issues in Sri Lanka. Water
Science and Technology 47, pp. 305-312, 2003.
[13] P. Dissanayake, A. Clemett, P. Jayakody & P. Amarasinghe. Report on
Water Quality Survey and Pollution in Kurunegala, Sri Lanka, 2007.
[14] U. S. Dissanayake, K. U. Tennakoon & N. Priyantha. Potential of two
invasive plant species, Lantana camara L. and Wedelia trilobata L. for
selective heavy metal uptake. Ceylon Journal of Science (Bio. Sci.) vol.
29, pp.1-11, 2002.
[15] S. Bandara. "Rajarata Goveen Wakugadu Roogeen Karana Pohora".
Lakbima, December 10, p. 21, 2006.
[16] M. Broadley, M. J. Willey, J. C. Wilkins, A. J. Baker, A. Mead & P. J.
White. Phylogenetic variation in heavy metal accumulation in
angiosperms. New Phytologist, vol. 152, pp. 9-27. Doi:10.1046/
j.0028-646x.2001.00238.x., 2001.
[17] V. Dushenkov, P. B. A. N. Kumar, H. Motto, & I. Raskin.
Rhizofilteration: the use of plants to remove heavy metal from aqueous
streams. Environmental Science and Technology, vol. 29, pp. 1239-
1245, 1995.
[18] K. Boye. Phytoextraction of Cu, Pb and Zn- a greenhouse study. Thesis.
Uppsala: Swedish University of Agricultural Sciences, 2002.
[19] D. Liu, W. Jiang, C. Liu, C. Xin, & W. How. Uptake and accumulation
of lead by roots, hypocotyls and shoots of Indian mustard (Brassica
juncea L.). Bioresource Technology, vol. 71, pp. 273-277, 2000.
Doi:10.1016/S0960-8524(99)00082-6.
[20] R. Clemente, D, J. Walker, and M. P. Bernal. Uptake of heavy metals
and as by Brassica juncea grown in a contaminated soil in Aznalcollar
(Spain): The effect of soil amendments. Environmental Pollution, vol.
138, pp. 46-58, 2005. Doi:10.1016/j.envpol.2005.02.019.
[21] M. J. Blaylock, & J. W. Huang. Phytoextraction of metals. In: I. Raskin
and B. D. Ensley (Eds.), Phytoremediation of toxic metals. Using plants
to clean up the environment. J. Wiley & Sons, New York, USA, pp. 53-
70, 2000.
[22] S. D. Ebbs, & L. V. Kochian. Phytoextraction of zinc by oat (Avena
sativa), barley (Hordeum vulgare), and Indian mustard (Brassica
juncea). Environmental Science and Technology, vol. 32, pp. 802-806.
Doi:10.1021/es970698p, 1998.
[23] A., Haag-Kerwer, A., H. J. Schafer, S. Heiss, C. Walter, & T. Rausch.
Cadmium exposure in Brassica juncea causes decline in transpiration
rate and leaf expansion without effect on photosynthesis. Journal of
Experimental Botany, vol. 50, pp. 1827-1835.
Doe:10.1093/jexbot/50.341.1827, 1999.
[24] J. R. Henry. In an overview of phytoremediation of
leadandmercury.NNEMS Report. Washington, DC, pp. 3-9, 2000.
[25] A. Kabata-Pendias. Trace elements in soils and plants. 3rd ed. Boca
Raton, CRC, 2001.
[26] PGRC Catalogue. Plant Genetic Resources Catalogue Passport
Information. Plant Genetic Resource Centre (PGRC), Gannoruwa, Sri
Lanka, pp. 10-12, 1999.
[27] S. R. Weerakoon, O. V. D. S. J. Weerasena, P. K. D. Peiris, & S.
Somaratne. Assessment of genetic variation within mustard (Brassica
juncea (L.) Czern & Coss) germplasm in Sri Lanka using Fluorescencebased
Amplified Fragment Length Polymorphic DNA markers.
International Journal of Biochemistry and Biotechnology, vol. 6, no. 5,
757-769, 2010.
[28] S. R. Weerakoon, & S. Somaratne. Seasonal variation of growth and
yield performance of mustard (Brassica juncea (L.) Czern & Coss)
genotypes in Sri Lanka. The Journal of Agricultural Sciences vol. 6, no.
1, pp. 1-15, 2011.
[29] S. R. Weerakoon, & S. Somaratne. Phytoextractive potential among
mustard (Brassica juncea (L). Czern) genotypes in Sri Lanka. Ceylon
Journal of Science (Bio. Sci.), vol. 38, no.2. pp. 39-47, 2009.
[30] AOAC. Official Methods of Analysis, 19th ed., Association of Office of
Analytical Chemistry Arlington, VA, 1984.
[31] SAS. Statistical Analysis for Science, SAS Institute Inc., Cary, NC,
USA, 2008.
[32] M. Pogrzeba, R. Kucharski, A. Sas-Nowosielska, E. Malkowski, K.
Krynski, & J. M. Kuperberg. Heavy metal removal from municipal
sewage sludges by phytoextraction., 1999 www.containment.fsu.
edu/cd/content/pdf/475.pdf.
[33] S. N. Mishra, & D. B. Singh. Accumulation of lead and cadmium in
upper parts of mustard (Brassica juncea) seedlings in response to
putrescine. Indian Journal of Experimental Biology, vol. 38, pp. 814-
818, 2000.
[34] M. Del Rio, R. Font & A. De Haro. Heavy metal uptake by Brassica
species growing in the polluted soils of Aznucollar (Southern Spain).
Fresenius Environmental Bulletin, vol.13, pp. 1439-1443, 2004.