Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets

Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.  

Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

This paper presents the results of an experimental  study on the effects of elevated temperature on compressive and  flexural strength of Normal Strength Concrete (NSC), High Strength  Concrete (HSC) and High Performance Concrete (HPC). In addition,  the specimen mass and volume were measured before and after  heating in order to determine the loss of mass and volume during the  test. In terms of non-destructive measurement, ultrasonic pulse  velocity test was proposed as a promising initial inspection method  for fire damaged concrete structure. 100 Cube specimens for three  grades of concrete were prepared and heated at a rate of 3°C/min up  to different temperatures (150, 250, 400, 600, and 900°C). The results  show a loss of compressive and flexural strength for all the concretes  heated to temperature exceeding 400°C. The results also revealed that  mass and density of the specimen significantly reduced with an  increase in temperature.  

Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene are put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP) strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using the solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Effect of Different Salt Concentrations and Temperatures on Seed Germination and Seedling Characters in Safflower (Carthamus tinctorius L.) Genotypes

Germination and seedling responses of seven safflower seed genotypes (Dinçer, Remzibey, Black Sun2 cultivars and A19, F4, I1, J19 lines) to different salinity concentrations (0, 5, 10 and 20g l-1) and temperatures (10 and 20oC) evaluated in Completely Randomized Factorial Designs in Department of Field Crops of Selcuk University, Konya, Turkey. Seeds in the control (distilled water) had at 10 and 20oC the highest germination percentage (93.88 and 94.32%), shoot length (4.60 and 8.72cm) and root length (4.27 and 6.54cm) shoot dry weight (22.37mg and 25.99mg) and root dry weight (2.22 and 2.47mg). As the salt concentration increased, values of all characters were decreased. In this experiment, in 20g l-1 salt concentration found germination percentage (21.28 and 26.66%), shoot (1.32 and 1.35cm) and root length (1.04 and 1.10cm) shoot (8.05mg and 7.49mg) and root dry weight (0.83 and 0.98mg) at 10 and 20oC.

Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.

Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. 

Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 C initial temperature. A round water jet of 22 ± 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.  

Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures

In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600, 700, 800, 900, 10000C) and studied their structural, optical and ferroelectric properties through X-ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal and cubic structure of BaTiO3. The Optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 10000C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 40 nm for the samples sintered at 600 to 10000C, respectively. Moreover, it has been observed that the ferroelectricity increases as we increase the sintering temperature.

New Drug Delivery System for Cancer Therapy

The paper presents a new drugs delivery system, based on the thin film technology. As a model antitumor drug, highly toxic doxorubicin is chosen. The system is based on the technology of obtaining zinc oxide composite of doxorubicin by deposition of nanosize ZnO films on the surface of doxorubicin coating on glass substrate using DC magnetron sputtering of zinc targets in Ar:O2 medium at room temperature. For doxorubicin zinc oxide compositions in the form of coatings and gels with 180-200nm thick ZnO films, higher (by a factor 2) in vivo (ascitic Ehrlich's carcinoma) antitumor activity is observed at low doses of doxorubicin in comparison with that of the initial preparation at therapeutic doses. The vector character of the doxorubicin zinc oxide composite transport to tumor tissues ensures the increase in antitumor activity as well as decrease of toxicity in comparison with the initial drug.

Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials

Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a Sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.

Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate

LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.

Lime-Pozzolan Plasters with Enhanced Thermal Capacity

A new type of lightweight plaster with the thermal capacity enhanced by PCM (Phase Change Material) addition is analyzed. The basic physical characteristics, namely the bulk density, matrix density, total open porosity, and pore size distribution are measured at first. For description of mechanical properties, compressive strength measurements are done. The thermal properties are characterized by transient impulse techniques as well as by DSC analysis that enables determination of the specific heat capacity as a function of temperature. The resistivity against the liquid water ingress is described by water absorption coefficient measurement. The experimental results indicate a good capability of the designed plaster to moderate effectively the interior climate of buildings.

Heat Generation Rate and Computational Simulation for Li-Ion Battery Module

In recent years Li-Ion batteries getting more attention among the Electrical Vehicles (EV) and Hybrid Electrical Vehicles (HEV) energy storage. Li-Ion has shown extended power density and light weight compared to other batteries readily available in the market. One of the major drawbacks in Li-Ion batteries is their sensitivity to the temperature. If the working temperature is beyond the limit, that could affect seriously on the durability and performance of Li-Ion battery. Thus Battery Thermal Management (BTM) is the most essential in adapting Li-Ion battery to the EVs and HEVs.

Backcalculation of HMA Stiffness Based On Finite Element Model

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer

Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.

Adsorption of Ferrous and Ferric Ions in Aqueous and Industrial Effluent onto Pongamia pinnata Tree Bark

One of the causes of water pollution is the presence of heavy metals in water. In the present study, an adsorbent prepared from the raw bark of the Pongamia pinnata tree is used for the removal of ferrous or ferric ions from aqueous and waste water containing heavy metals. Adsorption studies were conducted at different pH, concentration of metal ion, amount of adsorbent, contact time, agitation and temperature. The Langmuir and Freundlich adsorption isotherm models were applied for the results. The Langmuir isotherms were best fitted by the equilibrium data. The maximum adsorption was found to 146mg/g in waste water at a temperature of 30°C which is in agreement as comparable to the adsorption capacity of different adsorbents reported in literature. Pseudo second order model best fitted the adsorption of both ferrous and ferric ions.

Study of Heat Transfer of Nanofluids in a Circular Tube

Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.

Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.