Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads

The closed form study deals with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and thermomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness of profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.

Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene are put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Athermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s, and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

In this study, thermo elastic stress analysis is  performed on a cylinder made of laminated isotropic materials under  thermomechanical loads. Laminated cylinders have many  applications such as aerospace, automotive and nuclear plant in the  industry. These cylinders generally performed under  thermomechanical loads. Stress and displacement distribution of the  laminated cylinders are determined using by analytical method both  thermal and mechanical loads. Based on the results, materials  combination plays an important role on the stresses distribution along  the radius. Variation of the stresses and displacements along the  radius are presented as graphs. Calculations program are prepared  using MATLAB® by authors.