Wear and Mechanical Properties of Nodular Iron Modified with Copper

In this research (using induction furnace process)
nodular iron with three different percentages of copper (residual,
0.5% and 1,2%) was obtained. Chemical analysis was performed by
mass spectrometry and microstructures were characterized by Optical
Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM).
The study of mechanical behavior was carried out in a mechanical
test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99)
was used to assess wear resistance. It is observed that the dissolution
of copper in crystal lattice increases the pearlite structure improving
the wear and hardness behavior, but producing a contrary effect on
the energy absorption.





References:
[1] A. Zammita, M. Mhaedeb, M. Grecha, S. Abelaa, L. Wagnerb.
“Influence of shot peening on the fatigue life of Cu–Ni austempered
ductile iron” Materials Science and Engineering A 545 (2012) 78– 85
[2] Javaid, A.; Thomson, J.; Sahoo, M.; Davis, K. AFS Transaction Cast
Iron: (1999); 107, 441-455.
[3] Yu. M. Lajtin.”Metalografía y tratamiento térmico de los metales”4ª
Edición Editorial Mir (1985). Page 341-344.
[4] Gonzaga, R.A., González, J. Materials Processing Technology, pp 1 – 5,
2005.
[5] Horacio Sierra, Juan velez, Clara Herrera. Dyna, noviembre 2002
Universidad Nacional de Colombia (Medellin) volumen 69 No 137 pp
51-59 http://www.redalyc.org/pdf/496/49613706.pdf
[6] Samuel Rosario F., Héctor Villacorta A., Víctor Falconi R., Walter
Rengifo S., Miguel J. Martínez C. “Influence of Copper in the Gamma-
Alpha Transformation in the Gray and Nodular Melting – Hardenability”
http://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/viewFi
le/667/521(12-2011)
[7] ASTM International: Metals Test Methods & Analytical Procedures,
Editor David L. Olson.
[8] Hugo E. Cruz Cristerna, Ana Ma. Guzmán Hernández, Guadalupe A.
Castillo Rodríguez, Juan Fco. Flores Preciad.” Influencia del cobre en
las propiedades mecánicas del hierro nodular”. Programa Doctoral en
Ingeniería de Materiales, FIME-UANL.
[9] Nadot, Y., Mendez, J., Ranganathan, N. International Journal of Fatigue,
Vol. 26, pp 311–319, 2004.
[10] Hugo E. Cruz Cristerna, Ana Ma. Guzmán, Guadalupe A. Castillo, Juan
Fco. Flores Ingenierías, Octubre-Diciembre 2008, Vol. XI, No. 41. 11] A guide to the mechanical properties of ductile iron, mid Atlantic casing
service, http://www.mid-atlanticcasting.com/ductile-iron_castingguide_
FEB05.pdf
[12] Rio Tinto Iron & Titanium, Inc.; 770 Sherbrooke St. West, Suite 1800;
Montreal, Quebec, Canada, H3A 1G1” Ductile Iron society”, ductile
Iron Data for Design Engineers. http://www.ductile.org/didata/pdf/
didata2.pdf, 9.
[13] K. L. Krishnaraj, H. N. L. Narasimhan and S. Seshan, Structure and
Properties of ADI as Affected by Low Alloy Additions, AFS
Transactions, Vol 100, (1992) 105-112.
[14] Hugo E. Cruz Cristerna, et al. Influencia del cobre en las propiedades
mecánicas del hierro nodular, Ingenierías, Octubre-Diciembre 2008,
Vol. XI, No. 41.
[15] A. J. Saldivar, Efecto del Austemperizado Sobre la Microestructura y
Propiedades Mecánicas del Hierro Dúctil Aleado con Níquel y Cobre,
Tesis de Maestría, Instituto Tecnológico de Saltillo, Saltillo, Coah.,
México, 1994, p. 8-72.
[16] Cheng-Hsun Hsu, Kuan-Ting Lin. A study on microstructure and
toughness of copper alloyed and austempered ductile irons. Materials
Science and Engineering: A, Volume 528, Issue 18, 15 July 2011, Pages
5706-5712.