Volatile Organic Compounds Destruction by Catalytic Oxidation for Environmental Applications

Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ- Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.




References:
[1] S. Aguado, J. Coronas, and J. Santamaria, “Use of zeolite membrane
reactors for the combustion of VOCs present in air at low
concentrations,” Chemical Engineering Research & Design, vol.
83(A3), 2005, pp. 295-301.
[2] M. P. Pina, S. Irusta, M. Menendez, and J. Santamaria, “Combustion of
volatile organic compounds over platinum-based catalytic membranes,”
Industrial Engineering Chemistry Resources, vol. 36, 1997, pp. 4557-
4566.
[3] L. F. Liotta, “Catalytic oxidation of volatile organic compounds on
supported noble metals,” Applied Catalysis B: Environmental, vol.
100(3-4), 2010, pp. 403-412.
[4] F. I. Khan, and A. Kr. Ghoshal, “Removal of volatile organic
compounds from polluted air,” Journal of Loss Prevention in the
Process Industries, vol. 13(6), 2000, pp. 527-545.
[5] B. Buzcu-Guven, and R. Harriss, “Extent, impacts & remedies of global
gas flaring and venting,” Carbon Management, Vol. 3(1), 2012, pp. 95-
108.
[6] E. N. Ruddy, and L. A. Carroll, “Select the best VOC control strategy,”
Chemical Engineering Progress, Vol. 89(7), 1993, pp. 28-35.
[7] A. O. Rusu, and E. Dumitriu, “Destruction of volatile organic
compounds by catalytic oxidation,” Environmental Engineering and
Management Journal, vol. 2(4), 2003, pp. 273-302.
[8] M. Tamaddoni, R. Sotudeh-Gharebagh, S. Nario, M. Hajihosseinzadeh,
and N. Mostoufi, “Experimental study of the VOC emitted from crude oil tankers,” Process Safety and Environmental Protection, vol. 92,
2014, pp. 929-937.
[9] AIChE, “Current and potential future industrial practices for reducing
and controlling volatile organic compounds,” New York, NY: Centre for
Waste Reduction Technologies, AIChE, 1992.
[10] http://www.meca.org/galleries/files/hapwp.pdf “Catalytic oxidation for
the control of hazardous organic air pollutants,” 1995, (Accessed on 29th
October 2014).
[11] S. Benard, M. Ousmane, L. Retailleau, A. Boreave, P. Vernoux, and A.
Giroir-Fendler, “Catalytic removal of propene and toluene in air over
noble metal catalyst1,” Can. J. Civ. Eng., vol. 36, 2009, pp. 1935-1945.
[12] V. P. Santos, S. A. C. Carabineiro, P. B. Tavares, M. F.R. Pereira, J. J.
M. Órfão, and J. L. Figueiredo, “Oxidation of CO, ethanol and toluene
over TiO2 supported noble metal catalysts,” Applied Catalysis B:
Environmental, vol. 99, 2010, pp. 198-205.
[13] L. F. Liotta, M. Ousmane, G. Di. Carlo, G. Pantaleo, G. Deganello, A.
Boreave, and A. Giroir-Fendler, “Catalytic removal of toluene over
C03O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3,” Catal
Lett., vol. 127, 2009, pp. 270-276.
[14] P. Marécot, A. Fakche, B. Kellali, G. Mabilon, M. Prigent, and J.
Barbier, “Propane and propene oxidation over platinum and palladium
on alumina: Effects of chloride and water,” Applied Catalysis B
Environmental, vol. 3, 1994, pp. 283-294.
[15] S. Benard, A. Giroir-Fendler, P. Vernoux, N. Guilhaume, and K. Fiaty,
“Comparing monolithic and membrane reactors in catalytic oxidation of
propene and toluene in excess of oxygen,” Catalysis today, vol. 156,
2010, pp. 301-305.
[16] M. Paulis, L. M. Gandia, A. Gil, J. Sambeth, J. A. Odriozola, and M.
Montes, “Influence of the surface adsorption-desorption processes on the
ignition curves of volatile organic compounds (VOCs) complete
oxidation over supported catalysts,” Applied Catalysis B:
Environmental, vol. 26, 2000, pp. 37-46.
[17] M. Paulis, H. Peyrard, and M. Montes, “Influence of chlorine on the
activity and stability of Pt/Al2O3 catalysts in the complete oxidation of
toluene,” Journal of Catalysis, vol. 199, 2001, pp. 30-40.
[18] P. Papaefthimiou, T. Ioannides, and X. E. Verykios, “Combustion of
non-halogenated volatile organic compounds over group VIII metal
catalysts,” Applied Catalysis B: Environmental, vol. 13, 1997, pp. 175-
184.
[19] K. Everaert, and J. Baeyens, “Catalytic combustion of volatile organic
compounds,” Journal of Hazardous Materials: B, vol. 109, 2004, pp.
113-139.
[20] N. Radic, B. Grbic, and A. Terlecki-Baricevic, “Kinetics of deep
oxidation of n-hexane and toluene over Pt/Al2O3 catalysts platinum
crystallite size effect,” Applied Catalysis B: Environmental, vol. 50,
2004, pp. 153-159.
[21] D. H. Kim, M. C. Kung, A. Kozlova, S. D. Yuan, and H. H. Kung,
“Synergism between Pt/Al2O3 and Au/TiO2 in the low temperature
oxidation of propene,” Catalysis Letters, vol. 98(1), 2004, pp. 11-15.
[22] S. F. Tahir, and C. A. Koh, “Catalytic destruction of volatile organic
compound emissions by platinum based catalyst,” Chemosphere, vol.
38(9), 1999, pp. 2109-2116.
[23] A. C. Gluhoi, N. Bogdanchikova, and B. E. Nieuwenhuys, “Total
oxidation of propene and propane over gold-copper oxide on alumina
catalysts: Comparison with Pt/Al2O3,” Catalysis Today, vol. 113, 2006,
pp. 178-181.
[24] M. P. Pina, M. Menendez, and J. Santamaria, “The Knudsen-diffusion
catalytic membrane reactor: An efficient contactor for the combustion of
volatile organic compounds,” Applied Catalysis B: Environmental, vol.
11, 1996, pp. L19-L27.
[25] D. Uzio, S. Miachon, and J.-A. Dalmon, “Controlled Pt deposition in
membrane mesoporous top layers,” Catalysis Today, vol. 82, 2003, pp.
67-74.
[26] E. E. Iojoiu, J. Walmsley, H. Raeder, R. Bredesen, S. Miachon, and J.-A.
Dalmon, “Comparison of different support types for the preparation of
nanostructured catalytic membranes,” Rev. Adv. Mater. Sci., vol. 5,
2003, pp. 160-165.
[27] G. Saracco, and V. Specchia, “Catalytic filters for the abatement of
volatile organic compounds,” Chemical Engineering Science, vol. 55,
2000, pp. 897-908.