Various Modifications of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide

In this paper, two options of anodic alumina barrier
layer thinning have been demonstrated. The approaches varied with
the duration of the voltage step. It was found that too long step of the
barrier layer thinning process leads to chemical etching of the
nanopores on their top. At the bottoms pores are not fully opened
what is disadvantageous for further applications in nanofabrication.
On the other hand, while the duration of the voltage step is controlled
by the current density (value of the current density cannot exceed
75% of the value recorded during previous voltage step) the pores are
fully opened. However, pores at the bottom obtained with this
procedure have smaller diameter, nevertheless this procedure
provides electric contact between the bare aluminum (substrate) and
electrolyte, what is suitable for template assisted electrodeposition,
one of the most cost-efficient synthesis method in nanotechnology.





References:
[1] S. Ono, N. Masuko, “Evaluation of pore diameter of anodic porous films
formed on aluminum,” Surf. Coat. Technol., vol. 169-170, 2003, pp.
139-142
[2] S. Ono, M. Saito, H. Asoh, “Self-ordering of anodic porous alumina
formed in organic acid electrolytes,” Electrochim. Acta, vol. 51, 2005,
pp. 827-833
[3] W. J. Stępniowski, M. Norek, M. Michalska-Domańska, Z. Bojar,
“Ultra-small nanopores obtained by self-organized anodization of
aluminum in oxalic acid at low voltages,” Mater. Lett., vol. 111, 2013,
pp. 20-23
[4] W. J. Stępniowski, Z. Bojar, “Synthesis of anodic aluminum oxide
(AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features,” Surf. Coat.
Technol., vol. 206, 2011, pp. 265-272
[5] O. Nishinaga, T. Kikuchi, S. Natusi, R.O. Suzuki, “Rapid fabrication of
self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by
selenic acid anodizing,” Sci. Reports, vol. 3, 2013, pp. 2748
[6] T. Kikuchi, D. Nakajima, J. Kawashima, S. Natsui, R.O. Suzuki,
“Fabrication of anodic porous alumina via anodizing in cyclicoxocarbon
acids,” Appl. Surf. Sci., vol. 313, 2014, pp. 276-285
[7] X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng, G. Ding, H. Zeng, X. Xu,
“Effect of ethanol on the fabrication of porous anodic alumina in sulfuric
acid,” Surf. Coat. Technol., vol. 254, 2014, pp. 398–401
[8] Y. T. Pang, G. W. Meng, W. J. Shan, L. D. Zhang, X. Y. Gao, A.W.
Zhao, Y.Q. Mao, ” Arrays of ordered Ag nanowires with different
diameters in different areas embedded in one piece of anodic alumina
membrane, Appl Phys A, vol. 77, 2003, pp. 717-720
[9] M. P. Proenca, C.T. Sousaa, J. Ventura, M. Vazquez, J. P. Araujo, “Ni
growth inside ordered arrays of alumina nanopores: Enhancing the
deposition rate,” Electrochim. Acta, vol. 72, 2012, pp. 215-21
[10] R. C. Furneaux, W. R. Rigby, A. P. Davidson, “The formation of
controlled-porosity membranes from anodically oxidized aluminium,“
Nature, vol. 337, 1989, pp. 147-149
[11] J. M. Montero-Moreno, M. Belenguer, M. Sarret, C. M. Müller,
“Production of alumina templates suitable for electrodeposition of
nanostructures using stepped techniques,” Electrochim. Acta, vol. 54,
2009, pp. 2529–2535
[12] J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, U. Gösele,
“Hexagonally Arranged Monodisperse Silver Nanowires with
Adjustable Diameter and High Aspect Ratio,” Chem. Mater., vol.. 15,
2003, pp. 776-779
[13] Z. Wu, Y. Zhang, K. Du, “A simple and efficient combined AC–DC
electrodeposition method for fabrication of highly ordered Au nanowires
in AAO template,” Appl. Surf. Sci., vol. 265, 2013, pp 149-56
[14] A. J. Yin, J. Li, W. Jian, A. J. Bennet, J. M. Xu, “Fabrication of highly
ordered metallic nanowire arrays by electrodeposition,” Appl. Phys.
Lett., vol. 79, 2001, pp. 1039-41
[15] J. Qin, J. Nogue, M. Mikhaylova, A. Roig, J. S. Munoz, M. Muhammed,
“Differences in the Magnetic Properties of Co, Fe, and Ni 250-300 nm
Wide Nanowires Electrodeposited in Amorphous Anodized Alumina
Templates,” Chem. Mater., vol. 17, 2005 pp. 1829-34
[16] G. A. Gelves, Z. T. M. Murakami, M. J. Krantz, J. A. Haber,
„Multigram synthesis of copper nanowires using ac electrodeposition
into porous aluminium oxide templates,” J. Mater. Chem., vol. 16, 2006,
vol. 16, pp. 3075–83
[17] S. Z. Chu, K. Wada, S. Inoue, S. Todoroki, “Fabrication and
characteristics of nanostructures on glass by Al anodization and
electrodeposition,” Electrochim. Acta, vol. 48, 2003, pp. 3147-53
[18] K. Nielsch, F. Müller, A. P. Li, U. Gösele, “Uniform Nickel Deposition
into Ordered Alumina Pores by Pulsed Electrodeposition,” Adv. Mater.,
vol. 12, 2000, pp. 582-6
[19] J. M. Montero-Moreno, M. Belenguer, M. Sarret, C. M. Mőller,
“Production of alumina templates suitable for electrodeposition of
nanostructures using stepped techniques,” Electrochim. Acta, vol. 54,
2009; pp. 2529-35
[20] S. Sousa, D. C. Leitao, J. Ventura, P. B. Tavares, J. P. Araujo, ”A
versatile synthesis method of dendrites free segmented nanowires with a
precise size control,” Nanoscale Res. Lett., vol. 7, 2012, pp. 168
[21] N. Winkler, J. Leuthold, Y. Lei, G. Wilde, ”Large-scale highly ordered
arrays of freestanding magnetic nanowires,” J. Mater. Chem., vol. 22,
2012, pp. 16627-16632
[22] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, „Electrochemical
Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum
Oxide Templates,” J. Phys. Chem., vol. 100, 1996; pp. 14037-47
[23] W. Lee, M. Alexe, K. Nielsch, U. Gösele, “Metal Membranes with
Hierarchically Organized Nanotube Arrays,” Chem. Mater., vol. 17,
2005, pp. 3325-7
[24] W. Lee, R. Scholz, K. Nielsch, U. Gösele, „A Template-Based
Electrochemical Method for the Synthesis of Multisegmented Metallic
Nanotubes,” Angew. Chem. Int. Ed., vol. 44, 2005, pp. 6050 –4
[25] W. J. Stępniowski, W. Florkiewicz, M. Michalska-Domańska, M.
Norek, T. Czujko, J. Electroanal. Chem. Volume 741, 2015, Pages 80-
86
[26] L. Zaraska, E. Kurowska, G. D. Sulka, M. Jaskuła, “Porous alumina
membranes with branched nanopores as templates for fabrication of Yshaped
nanowire arrays,” Journal of Solid State Electrochemistry, vol. 6,
Issue 11, 2012, pp. 3611-3619