The TiO2 Refraction Film for CsI Scintillator

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light through TiO2 filmand the first surface of CsI then arrive to the second surface of CsI. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.





References:
[1] C.M. Schaefer-Prokop, D.W. De Boo, M. Uffmann, M. Prokop.
DR and CR: Recent advances in technology, European Journal of
Radiology, 72(2), (2009) 194-201.
[2] A. Koch, C. Raven, P. Spanne, A. Snigirev, X-ray imaging with
submicrometer resolution employing transparent luminescent
screens, Journal of the Optical Society of America A, 15(7),
(1998) 1940-1951.
[3] S Zazubovich. Physics of halide scintillators, Radiation
Measurements, 33(5), (2001) 699-704.
[4] U.L. Olsen, X. Badel, J. Linnros, M. Di Michiel, T. Martin, S.
Schmidt, H.F. Poulsen, Development of a high-efficiency
high-resolution imaging detector for 30–80 keV X-rays, Nuclear
Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated
Equipment, 576(1), (2007) 52-55.
[5] A. M. Gurvich, Luminescent screens for mammography, Radiation
Measurements, 24(4), (1995) 325-330.
[6] A Koch, H Rosenfeldt, Powder-phosphor screens combined with
interference filters for X-ray imaging with increased brightness,
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated
Equipment, 432(2-3), (1999) 358-363.
[7] M. Stampanoni, G. Borchert, P. W., R. Abela, B. Patterson, S.
Hunt, D. Vermeulen,.P. Rüegsegger, High resolution X-ray
detector for synchrotron-based microtomography, Nuclear
Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated
Equipment, 491(1-2), (2002) 291-301.
[8] A. Ananenko, A. Fedorov, A. Lebedinsky, P. Mateychenko, V.
Tarasov, Y. Vidaj, structural dependence of CsI(Tl) film
scintillation properties, Semiconductor Physics, Quantum
Electronics & Optoelectronics, 7(3), (2004) 297-300.
[9] E. Zych, C. Brecher, and H. Lingertat, Depletion of high-energy
carriers in YAG optical ceramic materials, Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, 54(11), (1998)
1771-1777.
[10] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima,
Direct preparation of anatase TiO2 nanotubes in porous alumina
membranes, Journal of Materials Chemistry, 9(12), (1999)
2971-2972.
[11] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi,
Preparation of TiO2
fibers with well-organized structures, Journal
of Materials Chemistry, 10, (2000) 2005-2006.
[12] K. Shimizu, H. Imai, H. Hirashima, and K. Tsukuma,
Low-temperature synthesis of anatase thin films on glass and
organic substrates by direct deposition from aqueous solutions,
Thin Solid Films 351(1-2), (1999) 220-224.
[13] C. Chen, C. Cheng, G. Tang, T. Lin, C. Lin, “Template Assisted
Fabrication of TiO2 and BaTiO3 Nanotubes”, Applied Mechanics
and Materials 271-272, (2013) 107-111.