The role of pH on Cr(VI) Reduction and Removal by Arthrobacter Viscosus

Arthrobacter viscosus biomass was used for Cr(VI) biosorption. The effect of pH on Cr(VI) reduction and removal from aqueous solution was studied in the range of 1-4. The Cr(VI) removal involves both redox reaction and adsorption of metal ions on biomass surface. The removal rate of Cr(VI) was enhanced by very acid conditions, while higher solution pH values favored the removal of total chromium. The best removal efficiency and uptake were reached at pH 4, 72.5 % and 12.6 mgCr/gbiomass, respectively.




References:
[1] M. Gavrilescu, "Removal of heavy metals from the environment by
biosorption - a review", Engineering Life Science, vol. 4 (3), pp. 219-
232, 2004.
[2] U. K. Garg, M. P. Kaur, V. K. Garg and D. Sud, "Removal of hexavalent
chromium from aqueous solution by agricultural waste biomass",
Journal of Hazardous Materials, vol. 140, pp. 60- 68, 2007.
[3] T. L. Kalabegishvili, N. Y. Tsibakhashvili and H.-Y. N. Holman,
"Electron spin resonance study of chromium(V) formation and
decomposition by basalt-inhabiting bacteria", Environmental Science
and Technology, vol.37, pp. 4678-4684, 2003.
[4] N. Y. Tsibakhashvili, L. M. Mosulishvili, T. L. Kalabegishvili, E. I.
Kirkesali, M. V. Frontasyeva, E. V. Pomyakushina, S. S. Pavlov and H.-
Y. N. Holman, "ENAA studies of chromium uptake by Arthrobacter
oxydans", Journal of Radioanalytical and Nuclear Chemistry, vol. 259
(3), pp. 527-531, 2004.
[5] D. Mohan and C. U. Pittman Jr., "Activated Carbons and Low-Cost
Adsorbents for Remediation of Tri- and Hexavalent Chromium from
Water: A Review", Journal of Hazardous Materials B, vol. 137, pp.
762-811, 2006.
[6] B. Silva, H. Figueiredo, C. Quintelas, I. C. Neves and T. Tavares,
"Zeolites as supports for the biorecovery of hexavalent and trivalent
chromium", Microporous and Mesoporous Materials, article in press,
doi: 10.1016/j.micromeso.2008.05.015, 2008.
[7] S. Deng and R. Bai, "Removal of trivalent and hexavalent chromium
with aminated polyacrylonitrile fibers: performance and mechanisms",
Water Research, vol. 38, pp. 2424-2432, 2004.
[8] S. S., Ahluwalia and D. Goyal, "Microbial and plant derived biomass for
removal of heavy metals from wastewater", Bioresource Technology,
vol. 98, pp. 2243-2257, 2007.
[9] Y. Sa─ƒ and T. Kutsal, Biosorption of heavy metals by Zooglodea
ramigera: use of adsorption isotherms and a comparison of biosorption
characteristic, The Chemical Engineering Journal, vol. 60, pp. 181-188,
1995.
[10] M. X. Loukidou, A. I. Zouboulis, T. D. Karapantsios and K. A. Matis,
"Equilibrium and kinetic modeling of chromium(VI) biosorption by
Aeromonas caviae", Colloids and Surfaces A, vol. 242, pp. 93-104,
2004.
[11] J. R. Duncan, D. Brady and A. Stoll, "Biosorption of heavy metal
cations by non viable yeast cells", Environmental Technology, vol. 15,
429-438, 1994.
[12] M .M. Urrutia, General Bacterial Sorption Processes. London, Taylor
and Francis Publishers, 1997, pp. 39-66.
[13] N. V. Asatiani, M. K. Abuladze, T. M. Kartvelishvili, N. G. Bakradze,
N. A. Sapojnikova, N. Y. Tsibakhashvili, L. V. Tabatadze, L. V. Lejava,
L. L. Asanishvili and H-Y. Holman, "Effect of chromium(VI) action on
Arthrobacter oxydans", Current Microbiology, vol. 49, pp. 321-326,
2004.
[14] H. Figueiredo, B. Silva, M. M. M. Raposo, A. M. Fonseca, I. C. Neves,
C. Quintelas and T. Tavares, "Immobilization of Fe(III) complexes of
pyridazine derivatives prepared from biosorbents supported on zeolites",
Microporous and Mesoporous Materials, vol. 109, pp. 163-171, 2008.
[15] B. Silva, H. Figueiredo, C. Quintelas, I. C. Neves and T. Tavares, "Iron
and Chromium Removal from Binary Solutions of Fe(III)/Cr(III) and
Fe(III)/Cr(VI) by Biosorbents Supported on Zeolites", Materials Science
Forum, vol. 587-588, pp. 463-467, 2008.
[16] D. Park, Y.-S. Yun and J. M. Park, "Reduction of Hexavalent
Chromium with the Brown Seaweed Ecklonia Biomass", Environmental
and Science Technology", vol. 38, pp. 4860-4864, 2004.
[17] D. Park, Y.-S. Yun, J. H. Jo and J. M. Park, "Mechanism of hexavalent
chromium removal by dead fungal biomass of Aspergillus niger", Water
Research", vol. 39, pp. 533-540, 2005.
[18] D. Park, Y.-S. Yun, C. K. Ahn and J. M. Park, "Kinetics of the
reduction of hexavalent chromium with the brown seaweed Ecklonia
biomass", Chemosphere, vol. 66, pp. 939-946, 2007.
[19] D. Park, Y.-S. Yun, J. Y. Kim and J. M. Park, "How to study Cr(VI)
biosorption: Use of fermentation waste for detoxifying Cr(VI) in
aqueous solution", Chemical Engineering Journal", vol. 136, pp. 173-
179, 2008.
[20] R. Say, A. Denizli and M. Y. Ar─▒ca, "Biosorption of cadmium(II),
lead(II) and copper(II) with the filamentous fungus Phanerochaete
chrysosporium", Bioresource Technology, vol. 76, pp. 67-70, 2001.
[21] M. Ziagova, G. Dimitriadis, D. Aslanidou, X. Papaioannou, E. L.
Tzannetaki and M. Liakopoulou-Kyriakides, "Comparative study of
Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and
Pseudomonas sp. in single and binary mixtures", Bioresource
Technology, vol. 98, pp. 2859-2865, 2007.
[22] V. Murphy, H. Hughes, P. McLoughlin, "Comparative study of
chromium biosorption by red, green and brown seaweed biomass",
Chemosphere, vol. 70, pp. 1128-1134, 2008.
[23] D. Eaton, L. S. Clesceri, A. E. Greenberg, Standard methods for the
examination of water and wastewater. Washington, American Public
Health Association (APHA), 1995.