The Effects of Alkalization to the Mechanical Properties of the Ijuk Fiber Reinforced PLA Biocomposites

Today, the pollution due to non-degradable material
such as plastics, has led to studies about the development of
environmental-friendly material. Because of biodegradability
obtained from natural sources, polylactid acid (PLA) and ijuk fiber
are interesting to modify into a composite. This material is also
expected to reduce the impact of environmental pollution. Surface
modification of ijuk fiber through alkalinization with 0.25 M NaOH
solution for 30 minutes was aimed to enhance its compatibility to
PLA, in order to improve properties of the composite such as the
mechanical properties. Alkalinization of the ijuk fibers annihilates
some surface components such as lignin, wax and hemicelloluse, so
the pore on the surface clearly appeared, decreasing of the density
and diameter of the ijuk fibers. The change of the ijuk fiber properties
leads to increase the mechanical properties of PLA composites
reinforced the ijuk fibers through strengthening of the mechanical
interlocking with the PLA matrix. An addition to enhance the
distribution of the fibers in the PLA matrix, the stirring during DCM
solvent evaporation from the mixture of the ijuk fibers and the
dissolved-PLA can reduce amount of the trapped-voids and fibers
pull-out phenomena, which can decrease the mechanical properties of
the composite.





References:
[1] A. K. Mohanty, M. Misra, L. T. Drzal, S. E. Selke, B. R. Harte, G.
Hinrichsen, “Natural fibres, biopolymers, and biocomposites: an
introduction,” Boca Raton: CRC Press, 2005, pp. 1-36.
[2] M. John, S. Thomas, “Biofibres and biocomposites,” Carbohydr.
Polym., vol. 71, 2008 ,pp. 343–64
[3] S.R. Suprakas, B. Mosto, “Biodegradable polymers and their layered
silicate nanocomposites: In greening the 21st century materials world,”
Prog. Mater. Sci., vol. 50, 2005, pp. 962-1079.
[4] L. Yu, L. Chen, “Biodegradable polymer blends and composites from
renewable resources,” 2009, John Willey & Sons.
[5] G. Donal, “A Literature Review of Poly(Lactic Acid),” Journal of
Polymers and the Environment, April 2001, Vol. 9, No. 2.
[6] S. R. Suprakas, M. Pralay, O. Masami, Y. Kazunobu, U. Kazue, “New
polylactide/layered silicate nanocomposites. 1. Preparation,
characterization, and properties,” Macromolecules, vol. 35, 2002, pp.
3104-3110.
[7] S. Gu, M. Yang, T. Yu, T. Ren, J. Ren, “Synthesis and characterization
of biodegradable lactic acid-based polymers by chain extension”, Polym.
Int., 2008, vol. 57, pp. 982-986.
[8] D. Cohn, A. H. Salomon, “Designing biodegradable multiblock
PCL/PLA thermoplastic elastomer”, Journal Biomaterials 2005, vol. 26,
pp. 2297-2305.
[9] S. H. Masud, T. D. Lawrence, M. Manjusri, “A study on biocomposites
from recycled newspaper fiber and poly(lactic acid)”, Ind Eng Chem Res
2005, vol. 44, pp. 5593-5601.
[10] A. K. M. M Alam, M. D. H. Beg, M. F. Mina, M. R. Khan, D. R. M.
Prasad, “Structures and performances of simultaneous ultrasound and
alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic
acid) composites”, Journal Composites: Part A 43, 2012, pp. 1921–
1929.
[11] Y. Tao, L. Yan, R Jie, “Preparation and properties of short natural fiber
reinforced poly(lactic acid) composites”. Met Soc China 19, 2009, pp.
s651 - s655.
[12] S. Lisman, N. N. Antonio, Y. Hiroyuki, “The effect of crystallization of
PLA on the thermal and mechanical properties of micro-fibrillated
cellulose-reinforced PLA composites”, Journal Composites Science and
Technology 69, 2009, pp.1187–1192.
[13] O. Faruk, K. B. Andrzej, F. Hans-Peter, S. Mohini, “Biocomposites
reinforced with natural fibers: 2000–2010”, Journal Elsevier Progress in
Polymer Science 37, 2012, pp.1552– 1596.
[14] M. R. Ishaka, S. M. Sapuana, Z. Lemana, M. Z. A. Rahmand, U. M. K.
Anwarc, J. P. Siregara, “Sugar palm (Arenga pinnata): Its fibres,
polymers and composites”, Journal Elsevier Carbohydrate Polymers 91,
2013, pp.699–710.
[15] S. Misri, Z. Leman, S. M. Sapuan, M. R. Ishak, “Mechanical properties
and fabrication of small boat using woven glass/sugar palm fibres
reinforced unsaturated polyester hybrid composite”, IOPSIENCE
Publisher, 2010.
[16] M. R. Ishak, Z. Leman, S. M. Sapuan, M. Y. Salleh, S. Misri, “The
Effect of Sea Water Treatment on the Impact and Flexural Strength of
Sugar Palm Fibre Reinforced Epoxy Composites”, International Journal
of Mechanical and Materials Engineering (IJMME), Vol. 4 , No. 3,
2009, pp.316-320.
[17] D. Bachtiar, S. M. Sapuan, M. M. Hamdan, “The effect of alkaline
treatment on tensile properties of sugar palmfibre reinforced epoxy
composites”, Journal Materials and Design 29, 2008, pp.1285–1290.
[18] D. Bachtiar, S. M. Sapuan, A. Khalina, E. S. Zainudin, K. Z. M. Dahlan,
“The Flexural, Impact and Thermal Properties of Untreated Short Sugar
Palm Fibre Reinforced High Impact Polystyrene (HIPS) Composites”,
Smithers Rapra Technology, 2010.
[19] D. Bahtiar S. M. Sapuan, “The Mechanical Properties Sugar Palm Fibre
Reinforced High Impact Polystyrene (HIPS) Composites”, Procedia
Chemistry 4, 2012, pp. 101 – 106.
[20] J. Sahari, S. M. Sapuan, “Natural fibre reinforced biodegradable
polymercomposites”, Reviews on Advanced Materials Science, 30, 2011,
pp. 14–34.
[21] A. K. Mohanty, M. Misra, L. T. Drzal, “Improvement in the mechanical
properties of polylactide and bamboo fiber biocomposites by fiber
surface modification”, 2002, pp.789-796.
[22] K. Stana-Kleinschek, V. Ribitsch, T. Kreze, M. Sfiligoj-Smole, Z.
Persin, “Correlation of regenerated cellulose fibres morphology and
surface free energy components”, Lenzinger Berichte 2003, 82, pp.83–
95.
[23] A. Jahn, M.W. Schroeder, M. Futting, K. Schezel, W. Diepenbrock,
“Characterisation of alkali treated flax fiber by means of PT Raman
spectroscopy and environmental SEM”, Spectrochim Acta A: Mol
Biomol Spectrosc, 227,2002.
[24] C. William D, “Materials Science and Engineering”, John Wiley & Sons
(Asia) Pte Ltd, 2011.
[25] M. M. Kabir, H. Wang, K. T. Lau, F. Cardona, “Chemical treatments on
plant-based natural fibre reinforced polymer composites: An overview
Elsevier, 2012.
[26] P. V. Joseph, K. Joseph, S. Thomas, CKS. Pillai, VS. Prasad, G.
Groeninckx et al., “The thermal and crystallisation studies of short sisal
fibre reinforced polypropylenecomposites”, Compos Part A – Appl Sci
Manuf 2003, 34(3), pp. 253–66.
[27] K. L. Bowles, S. Frimpong, “Void effects on the interlaminar shear
strength of unidirectional graphite–fiber-reinforced composites”, J
Compos Mater 1992, 26(10), pp.1487–509.
[28] A. Vaxman, M. Narkis, A. Siegmann, S. Kenig, “Void formation in
short-fiberthermoplastic composites”, Polym Compos 2004, 10(6),
pp.449–53.
[29] G. Alexandros, Polymer Blends topics on the basic and manufacturing,
Delft: Delft University of Technology,2000
[30] D. Hull, W. Clyne, An Introduction to composites materials, Cambridge:
Cambridge University Press, 1996.
[31] S. Fakirov, D. Bhattacharyya, editors, “Engineering biopolymers:
homopolymers, blends and composites”, Munich Hanser Publishers;
2007, ISBN: 978-1-56990-405-3.
[32] R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, M. S. Sreekala,
“Activation energy and crystallization kinetics of untreated and treated
oil palm fiber reinforced phenol formaldehyde composites”, Material
Science Eng, vol. 277, 2000, pp. 77–82.
[33] Y. M. Mwaikambo, MP. Ansell, “The effect of chemical treatment on
the properties of hemp, sisal, jute and kapok fibres for composite
reinforcement”, Angew Makromol Chem 1999, 272, pp.108–16.
[34] D. Bachtiar, M, Sapuan, A, Khalina, S, Zainudin, M, Dahlan, “The
Flexural, Impact and Thermal Properties of Untreated Short Sugar Palm
Fiber Reinforced High Impact Polystyrene (HIPS)”, Polymers and
Polymer Composites, vol. 20, 2011, pp. 493-500.