The Effect of a Muscarinic Antagonist on the Lipase Activity

Lipases constitute one of the most important groups of
industrial enzymes that catalyze the hydrolysis of triacylglycerol to
glycerol and fatty acids. Muscarinic antagonist relieves smooth
muscle spasm of the gastrointestinal tract and effect on the
cardiovascular system. In this research the effect of a muscarinic
antagonist on the lipase activity of Pseudomonas aeruginosa was
studied. Lineweaver–Burk plot showed that the drug inhibited the
enzyme by competitive inhibition. The IC50 value (0.16 mM) and Ki
(0.03 mM) of the drug revealed the drug bound to enzyme with high
affinity. Determination of enzyme activity in various pH and
temperature showed that the maximum activity of lipase was at pH 8
and 60oC both in presence and absence of the drug.





References:
[1] A. Mrozik, Z. Piotrowsks-Seget, S. Labuzek. “Bacterial degradation and
bioremediation of polycyclic aromatic hydrocarbons.” Pol J Environ
Stud 12, 15-25, 2003.
[2] K.N. Timmis, D.H. Pieper. “Bacteria designed for bioremediation.”
Trends Biotechnol 17, 201-204, 1999.
[3] Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey
MJ, et al. Complete genome sequence of pseudomonas aeruginosa
PA01, an opportunistic pathogen. Nature. 2000;406:959-64
[4] E. Frimmersdorf, S. Horatzek, A. Pelnikevich, L. Wiehlmann, D.
Schomburg. “How Pseudomonas aeruginosa adapts to various
environments: a metabolomic approach.” Environ Microbiol 12, 1734-
1747, 2010.
[5] S. J. Cryz, B.H. Iglewski, “Production of alkaline protease by
Pseudomonas aeruginosa” J Clin Microbiol 12(1):131-133, 1980.
[6] R. A. Bever, B. H. Iglewski, “Molecular characterization and nucleotide
sequence of the Pseudomonas aeruginosa elastase structural gene” J
Bacteriol, 170(9):4309-4314. 1988.
[7] R.M. Ostroff, M.L. Vasil, “Identification of a new phospholipase C
activity by analysis of an insertional mutation in the hemolytic
phospholipase C structural gene of Pseudomonas aeruginosa” J
Bacteriol, 169(10), 4597-460,11987.
[8] W. Stuer, K.E. Jaeger, U.K. Winkler, “Purification of extracellular lipase
from Pseudomonas aeruginosa” J Bacteriol, 168(3):1070-1074, 1986.
[9] A. Martinez, P. Ostrovsky, D. N. Nunn, “LipC, a second lipase of
Pseudomonas aeruginosa, is LipB and Xcp dependent and is
transcriptionally regulated by pilus biogenesis components” Mol
Microbiol, 34(2):317-326, 1999.
[10] B. König, K. E. Jaeger, A. E. Sage, M. L. Vasil, W. König, “Role of
Pseudomonas aeruginosa lipase in inflammatory mediator release from
human inflammatory effector cells (platelets, granulocytes, and
monocytes” Infect Immun, 64(8), 3252-3258, 1996.
[11] E.W. Seitz, “Industrial application of microbial lipases: A review” J
Amer Oil Chem Soc, 51, 12-16, 1974.
[12] Sztajer H, Maliszewska I, Wieczorek J. Production of 3. exogenous
lipase by bacteria, fungi and actinomycetes Enzyme Microb Technol
1998; 10: 492-7.
[13] J. Zhi, A.T. Melia, H. Eggers, R. Joly, I.H. Patel, "Review of limited
systemic absorption of orlistat, a lipase inhibitor, in healthy human
volunteers" J Clin Pharmacol 35 (11): 1103–1108, 1995.
[14] M.C. Mancini, A. Halpern, "Pharmacological treatment of obesity". Arq
Bras Endocrinol Metab 50(2), 377–89, 2006.
[15] D. Minai-Tehrani1, S. Khodai1, S. Aminnaseri, S. Minoui et al,
“Inhibition of renal alkaline phosphatase by cimetidine” Drug Metab
lett, 2011.
[16] D. Minai-Tehrani, S. Minoui, M. Sepehre, et al, “Inhibitory effect of
codeine on sucrase activity” Drug Metab lett, 3, 58–60, 2009.
[17] D. Minai-Tehrani, N. Fooladi, S. Minoui, Z. Sobhani-Damavandifar, et
al, “Structural changes and inhibition of sucrase after binding of
scopolamine” Eur J Pharmacol, 635, 23-26, 2010.
[18] D. Minai-Tehrani, M. Eslami, N. Khazaei, E. Katebian, et al, “Inhibition
and structural changes of liver alkaline phosphatase by tramadol” Drug
Metab lett, in press.
[19] D. Minai-Tehrani, M. Ghaffari, Z. Sobhani-Damavandifar, S. Minoui, et
al, “Ranitidine induces inhibition and structural changes in sucrase.” J
Enzyme Inhib Med Chem, 27(4): 553–557, 2012.