Surface Charge Based Rapid Method for Detection of Microbial Contamination in Drinking Water and Food Products

Microbial contamination, most of which are fecal born in drinking water and food industry is a serious threat to humans. Escherichia coli is one of the most common and prevalent among them. We have developed a sensor for rapid and an early detection of contaminants, taking E.coli as a threat indicator organism. The sensor is based on co-polymerizations of aniline and formaldehyde in form of thin film over glass surface using the vacuum deposition technique. The particular doping combination of thin film with Fe-Al and Fe-Cu in different concentrations changes its non conducting properties to p- type semi conductor. This property is exploited to detect the different contaminants, believed to have the different surface charge. It was found through experiments that different microbes at same OD (0.600 at 600 nm) have different conductivity in solution. Also the doping concentration is found to be specific for attracting microbes on the basis of surface charge. This is a simple, cost effective and quick detection method which not only decreases the measurement time but also gives early warnings for highly contaminated samples.





References:
[1] A.K. Khera,, D. C. Jain, and K. K. Dutta, Profile of epidemic emergencies in India during 1991-1995. J. Commun. Dis., 1996, 28,
p.129
[2] WHO , The World Health Report, Jeneva ,1996
[3] Rangel, J. M., Sparling, P.H., Crowe, C., Griffin, P. M., & Swerdlow, D. L. 2005. Emerging Infectious Diseases, Vol. 11, No. 4 , 603-609.
[4] U Szewzyk., R.Szewzyk., W. Manz, and K.H..Schleifer,
Microbiological safety of drinking water, Annu. Rev. Microbiol., 2000,54, p.81
[5] US environment protection agency (http://www.epa.gov )
[6] S.C .Edberg., E.W.Rice, R.J. Karlin, and M.J. Allen, Escherichia coli:
the best biological drinking water indicator for public health protection.Journal of Applied Microbiology -Symposium Supplement.
,2000, 88: p.106S
[7] M. Manafi , W. Kneifel, S. Bascomb,, Fluorogenic and chromogenic substrates used in bacterial diagnostics, Microbiological Reviews, Sept. 1991, p. 335
[8] K. Venkateswaran, A. Murakoshi, and M. Satake , Comparison of
commercially available kits with standard methods for the detection of
coliforms and Escherichia coli in foods., App. and Environ Microb. July 1996, p. 2236
[9] Deisingh and M. Thompson , Strategies for the detection of Escherichia
coli O157:H7 in foods, Journal of Applied Microbiology ,2004, 96,p.419
[10] Yu Lei , W. Chenb, A. Mulchandani, Microbial biosensors, Analytica
Chimica Acta 568 (2006) p 200
[11] A.Subramanian , J. Irudayaraj , T. Ryanc , A mixed self-assembled
monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7, Biosensors and Bioelectronics 21 (2006), p998
[12] B. D. Spangler , E. A. Wilkinson , J. T. Murphy, B. J. Tyler,
Comparison of the Spreeta® surface plasmon resonance sensor and a
quartz crystal microbalance for detection of Escherichia coli heat-labile enterotoxin., Analytica Chimica Acta, 444, Issue 1, 12 (2001), p 149
[13] E. Kougianos, S.P. Mohanty, Biosensors: A Tutorial Review ,
Potentials, IEEE, 25, Issue: 2, (2006) p.35
[14] F.Pérez, I. Tryland, M. Mascini, L. Fiksdal, Rapid detection of Escherichia coli in water by a culture-based amperometric method. Analytica Chimica Acta 427 (2001) p. 149
[15] H.Tang , W. Zhang , P. Genga, Q.Wang, Litong Jin Zirong Wu, M.
Loub, A new amperometric method for rapid detection of Escherichia
coli density using a self-assembled monolayer-based bienzyme biosensor , Analytica Chimica Acta 562 (2006) p. 190
[16] N.Bianchi, C. Rutigliano, M. Tomassetti, G. Feriotto, F. Zorzato, R.
Gambari, Biosensor technology and surface plasmon resonance for
real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction. Clin. Diagn. Virol. 8 (1997) p 199
[17] J.J. Langer, M. Filipiak., J. Kecinska., J. Jasnowska., J. Wlodarczak
and B. Buladowski , Polyaniline biosensor for choline determination.
Surface Science, 2004 ,573, p.140
[18] Eric C and Ebtisam W, The Development of a New, Rapid, Amperometric Immunosensor for the Detection of Low Concentrations
of Bacteria Part II: Optimization of the System for Escherichia coli.,
American Journal of Applied Sciences 2005,2 (3):p 607
[19] K. Arora, N. Prabhakar, S. Chand, and B. D. Malhotra , Escherichia
coli Genonsensor Based on Polyaniline. Analytical Chemistry, Analytical Chemistry , American Chemical Society, 2007 , 80(5); p1833
[20] Scott R. Horner ,Charles R. Mace, Lewis J. Rothberg, Benjamin L.
Miller, A proteomic biosensor for enteropathogenic E. coli, Biosensors and Bioelectronics 21 (2006) p 1659
[21] Antje J. Baeumner , Richard N. Cohen, Vonya Miksic, Junhong Min ,
RNA biosensor for the rapid detection of viable Escherichia coli in
drinking water. Biosensors and Bioelec Biosensors and Bioelectronics
18 (2003) p 405
[22] H.Naarmann , DB Patent 117915, 1197228, 1179716, SASF Corp., FRG. 1963.,In The development of electrically Conducting Polymers, Advanced Materials, Volume 2 Issue 8, p 345
[23] Shirakawa,, J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene. J. Chem. Soc., Chem. Commun. , 1977,578.
[24] C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Electrical
Conductivity in Doped Polyacetylene.Phys. Rev. Lett., 39 (1977) 1098.
[25] T. C. Chung, J. H. Kaufman, A. J. Heeger and F. Wudl, Charge storage
in doped poly(thiophene): Optical and electrochemical studies, Phys. Rev. B, 30 (1984) p 702
[26] E. Diaz, K. K. Kanazawa and G. P. Gardini, L Chem. Soc. Chem. Comm., (1979) 535 in Extended Linear Chain Compounds, ed. J. S.
Miller, Plenum Press, New York, (1982), pp. 417-27.
[27] G. MacDiarmid. and A. Epstein., J. . Chem. Soc. Faraday Trans., (1989) 5. p 120
[28] V. Dixit , J. C. Tewari, B. S. Sharma, Detection of E. coli in water using
semi-conducting polymeric thin film sensor., Sensors and Actuators B
120 (2006) p 96
[29] D. Jeon, J. Kim, M.C. Gallagher , R.F. Willis, Scanning tunneling
spectroscopic evidence for granular metallic conductivity in conducting
polymeric polyaniline. Science 256 (1992) p 1662
[30] M. Mostefa, On the Poole-Frenkel effect in granular metals. Solid State
Commun. 73, 365-368.Solid State Commun. 73 (1990) p 365