Study of the Transport of Multivalent Metal Cations through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

In the present work, Electrochemical Impedance
Spectrocopy (EIS) is applied to study the transport of different metal
cations through a cation-exchange membrane. This technique enables
the identification of the ionic-transport characteristics and to
distinguish between different transport mechanisms occurring at
different current density ranges. The impedance spectra are
dependent on the applied dc current density, on the type of cation and
on the concentration.
When the applied dc current density increases, the diameter of the
impedance spectra loops increases because all the components of
membrane system resistance increase. The diameter of the impedance
plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the
increased interactions between the negatively charged sulfonic
groups of the membrane and the cations with greater charge. Nyquist
plots are shifted towards lower values of the real impedance, and its
diameter decreases with the increase of concentration due to the
decrease of the solution resistance.





References:
[1] A. Agrawal, K.K. Sahu, “An overview of the recovery of acid from
spent acidic solutions from steel and electroplating industries,” J.
Hazard. Mater., vol. 171, pp. 61–75, 2009.
[2] S.S. Chen, C.W. Li, H.D. Hsu, P.C. Lee, Y.M. Chang, C.H. Yang,
“Concentration and purification of chromate from electroplating
wastewater by two-stage electrodialysis processes,” J. Hazard. Mater.,
vol. 161, pp. 1075–1080, 2009.
[3] C. Korzenowski, M.A.S. Rodrigues, L. Bresciani, A.M. Bernardes, J.Z.
Ferreira, “Purification of spent chromium bath by membrane
electrolysis,” J. Hazard. Mater., vol. 152, pp. 960–967, 2008.
[4] L. Marder, E. M. Ortega-Navarro, V. Pérez-Herranz, A. M. Bernardes, J.
Z. Ferreira, “Chronopotentiometric study on the effect of boric acid in
the nickel transport properties through a cation-exchange membrane,”
Desalination, vol. 249, pp. 348-351, 2009.
[5] M. García-Gabaldón, V. Pérez-Herranz, E. Ortega, “Evaluation of two
ion-exchange membranes for the transport of tin in the presence of
hydrochloric acid,” J.Membr.Sci., vol. 371, pp. 65-74, 2011. [6] M. C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, “Effect
of the equilibria of multivalent metal sulfates on the transport through
cation-exchange membranes at different current regimes,” J. Memb. Sci.,
vol. 443, pp. 181-192, 2013.
[7] H.G.L. Coster, T.C. Chilcott, A.C.F. Coster, “Impedance spectroscopy
of interfaces, membranes and ultrastructures,” Bioelectrochem.
Bioenerg., vol. 40, pp. 79–98, 1996.
[8] J. Benavente, A. Cañas, “Transport of NaNO3 solutions across an
activated composite membrane: electrochemical and chemical surface
characterizations,2 J. Membr. Sci., vol. 156, pp. 241–250, 1999.
[9] J. Benavente, M.I. Vázquez, “Effect of age and chemical treatments on
characteristic parameters for active and porous sublayers of polymeric
composite membranes,” J. Colloid Interface Sci., vol. 273, pp. 547–555,
2004.
[10] H.D. Hurwitz, R. Dibiani, “Investigation of electrical properties of
bipolar membranes at steady state and with transient methods,”
Electrochim. Acta, vol. 47, pp. 759–773, 2001.
[11] Y.-H. Xue, T.-W. Xu, “Catalytic water dissociation using hyperbranched
aliphatic polyester as the interface of a bipolar membrane,” J. Colloid
Interface Sci., vol. 316, pp. 604–611, 2007.
[12] S. Bason, Y. Oren, V. Freger, “Characterization of ion transport in thin
films using electrochemical impedance spectroscopy II: Examination of
the polyamide layer of RO membranes,” J. Membr. Sci., vol. 302, pp.
10–19, 2007.
[13] J. S. Park, T.C. Chilcott, “Characterization of BSA-fouling of ionexchange
membrane systems using a subtraction technique for lumped
data,” J. Membr. Sci., vol. 246, pp. 137–144, 2005.
[14] J. S. Park, T.C. Chilcott, “An approach to fouling characterization of an
ion-exchange membrane using current–voltage relation and electrical
impedance spectroscopy,” J. Colloid Interface Sci., vol. 294, pp.129–
138, 2006.
[15] H.-J. Lee, M.-K. Hong, “Analysis of fouling potential in the
electrodialysis process in the presence of an anionic surfactant foulant,”
J. Membr. Sci., vol. 325, pp. 719–726, 2008.
[16] M. C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, E.
Ortega, “Determination of transport properties of Ni(II) through a
Nafion cation-exchange membrane in chromic acid solutions,”
J.Membr.Sci., vol. 379, pp. 449-458, 2011.
[17] Y. Kim, D. F. Lawler, “Overlimiting current by interactive ionic
transport between space charge region and electric double layer near ionexchange
membranes,” Desalination, vol. 285, pp. 245-252, 2012.
[18] R. Kwak, G. Guan, W. K. Peng, J. Han, “Microscale electrodialysis:
concentration profiling and vortex visualization,” Desalination, vol. 308,
pp. 138-146, 2013.
[19] J. Benavente, A. Cañas, M. J. Ariza, A. E. Lozano, J. de Abajo,
“Electrochemical parameters of sulfonated poly(ether ether sulfone)
membranes in HCl solutions determined by impedance spectroscopy and
membrane potential measurements”, Solid State Ionics, vol. 145, pp. 53-
60, 2001.
[20] J. S. Park, J. H. Choi, J. J. Woo, S. H. Moon, “An electrical impedance
spectroscopic (EIS) study on transport characteristics of ion‐exchange
membrane systems,” Journal of Colloid and Interface Science, vol. 300,
pp. 655-662, 2006.
[21] P. Dlugolecki, B. Anet, S. J. Metz, K. Nijmeijer, M. Wessling,
“Transport limitations in ion exchange membranes at low salt
concentrations,” J. Membr. Sci., vol. 346, pp. 163-171, 2010.