Structure-Phase States of Al-Si Alloy after Electron-Beam Treatment and Multicycle Fatigue

Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increases in fatigue life of the material have been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.




References:
[1] G S. Kocanda, Fatigue failure of metals, Alphen aan den Rijn: Sijthoff &
Noordhoff International Publishers, 1978.
[2] J. A. Fellows, “Fractography and Atlas of Fractographs”, in Metals
Handbook, vol. 9, Amer. Soc. Metals, 1974.
[3] G. B. Stroganov, V. A. Rothenberg and G. B. Gershman, “Aluminumsilicon
alloy”, Moscow: Metallurgy, 1977.
[4] Y. F. Ivanov, N. N. Koval, S. V. Gorbunov, S. V. Vorobyov, S. V.
Konovalov and V. E. Gromov, “Multicyclic fatigue of stainless steel
treated by a high-intensity electron beam: surface layer structure”, Rus.
Phys. J., vol. 54, pp. 575-583, Oct. 2011.
[5] V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, A. D. Teresov and S. V.
Konovalov, “Evolution of the phase composition and defect substructure
of rail steel subjected to high-intensity electron-beam treatment”, J. of
Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, vol. 7,
pp. 990-995, Sept. 2013.
[6] V. V. Sizov, V. E. Gromov, Y. F. Ivanov, S. V. Vorob'ev and S. V.
Konovalov, “Fatigue failure of stainless steel after electron-beam
treatment”, Steel in Translation, vol. 42, pp. 486-488, June 2012.
[7] Yu. F. Ivanov, D. A. Bessonov, S. V. Vorob’ev, V. E. Gromov, K. V.
Ivanov, Yu. A. Kolubaeva and V. Ya. Tsellermaer, “On the fatigue
strength of grade 20Cr13 hardened steel modified by an electron beam”,
J. of Surf. Investigation. X-ray, Synchrotron and Neutron Techniques,
vol. 7, pp. 90-93, Jan. 2013.
[8] D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, Yu. F. Ivanov and A. B.
Markov, “Physical foundations for surface treatment of materials with
low energy, high current electron beams”, Surf. and Coat. Technol., vol.
125, pp. 49-56, March 2000.
[9] Yu. F. Ivanov, T. Yu. Kobzareva, S. V. Raikov, V. E. Gromov, N. A.
Soskova and E. A. Budovskikh, “Modification of the surface of the VT6
alloy by plasma of electric explosion of a conducting material and by
electron beam”, Russian J. of Non-Ferr. Met., vol. 55, pp. 51-56, Jan.
2014.
[10] S. Z. Hao, Y. Qin, X. X. Mei, B. Gao, J. X. Zuo, Q. F. Guan, C. Dong
and Q. Y. Zhang, “Fundamentals and applications of material
modification by intense pulsed beams”, Surf. and Coat. Technol., vol.
201, pp. 8588–8595, August 2007.
[11] J. J. Hu, G. B. Zhang, H. B. Xu and Y. F. Chen, Microstructure
characteristics and properties of 40Cr steel treated by high current pulsed
electron beam”, Mater. Sci. and Technol., vol. 27, pp. 300-303, April
2012.
[12] L. J. Tan, Z. K. Yao, T. Wang and H. Z. Guo, “Effect of post-weld heat
treatment on microstructure and properties of electron beam welded joint
of Ti2AlNb/TC11”, Mater. Sc. and Technol., vol. 27, pp. 1315-1320,
August 2011.
[13] M. Elmadagli, T. Perry and A. T. Alpas, “A parametric study of the
relationship between microstructure and wear resistance of Al–Si
alloys”, Wear, vol. 262, pp. 79–92, Jan. 2007.
[14] M. Zeren and E. Karakulak, “Influence of Ti addition on the
microstructure and hardness properties of near-eutectic Al–Si alloys”, J.
of Alloys and Compounds, vol. 450, pp. 255–259, February 2008.
[15] C. X. Guang and E. Siegtried, “Einflus des wasserstof-fanfporositat Al-
Si and Al-Mg legirungen”, Giesserei, vol. 78, pp. 679-684, 1990.
[16] R. C. Hernandez and J. H. Sokolowski, “Thermal analysis and
microscopical characterization of Al–Si hypereutectic alloys”, J. of
Alloys and Compounds, vol. 419, pp. 180–190, August 2006.
[17] M. Zeren, “The effect heat-treatment on aluminum-based piston alloys”,
Materials and design, vol. 28, 2511–2517, 2007.
[18] R. Taghiabadi, H. M. Ghasemi and S. G. Shabestari, “Effect of iron-rich
intermetallics on the sliding wear behavior of Al–Si alloys”, Mater. Sci.
and Engineering A, vol. 490, pp. 162–167, August 2008.
[19] R. X. Li, R. D. Li, L. Z. He, C. X. Li, H. R. Gruan and Z. Q. Hu, “Agehardening
behavior of cast Al–Si base alloy”, Materials Letters, vol. 58,
pp. 2096–2101, June 2004.
[20] N. A. Belov, D. G. Eskin and A. A. Aksenov, Multicomponent Phase
Diagrams: Applications for Commercial Aluminum Alloys, Amsterdam:
Elsevier, 2005.
[21] N. A. Belov, D. G. Eskin and N. N. Avxentieva, “Constituent Phase
Diagrams of the Al–Cu–Fe–Mg–Ni–Si System and their Application to
the Analysis of Aliminium Piston Alloys”, Acta Materialia, vol. 53, pp.
4709–4722, Oct. 2005.
[22] A. M. A. Mohamed, A. M. Samuel, F. H. Samuel and H. W. Doty,
“Influence of additives on the microstructure and tensile properties of
near-eutectic Al–10.8%Si cast alloy”, Materials and Design, vol. 30, pp.
3943–3957, 2009.
[23] T. T. Wong and G. Y. Liang, “Effect of Laser Melting Treatment on the
Structure and Corrosion Behavior of Aluminium and Al-Si Alloys”, J. of
Materials Processing Technology, vol. 63, pp. 930-934, Jan. 1997.
[24] E. Sicard, C. Boulmer-Leborgne, C. Andreazza-Vignolle and M.
Frainais, “Excimer laser surface treatment of aluminum alloy in
nitrogen”, Appl. Phys. A, vol. 73, pp. 55–60, July 2001.
[25] P. H. Chong, Z. Liu, P. Skeldon and G. E. Thompson, “Large area laser
surface treatment of aluminum alloys for pitting corrosion protection”,
Applied Surface Science, vol. 208-209, pp. 399-404, March 2003.
[26] S. Tomida, K. Nakata, S. Shibata, I. Zenkouji and S. Saji, “Improvement
in wear resistance of hyper-eutectic Al-Si cast alloy by laser surface
remelting”, Surf. and Coat. Technol., vol. 169-170, pp. 468-471, June
2003.
[27] J. An, X. X. Shen, Y. Lu and Y. B. Liu, “Microstructure and tribological
properties of Al–Pb alloy modified by high current pulsed electron
beam”, Wear, vol. 261, pp. 208–215, July 2006.
[28] Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao and C. Dong, “Surface
modification of Al–20Si alloy by high current pulsed electron beam”,
Applied Surface Science, vol. 257, pp. 3913–3919, Feb. 2011.
[29] Y. Hao, B. Gao, G. F. Tu, H. Cao, S. Z. Hao and C. Dong, “Surface
modification of Al–12.6Si alloy by high current pulsed electron beam”,
Applied Surface Science, vol. 258, pp. 2052– 2056, Jan. 2012.
[30] J. An, X. X. Shen, Y. Lu, Y. B. Liu, R. G. Li, C. M. Chen and M. J.
Zhang, “Influence of high current pulsed electron beam treatment on the
tribological properties of Al–Si–Pb alloy”, Surf. and Coat. Technol., vol.
200, pp. 5590 – 5597, May 2006.
[31] Y. Hao, B. Gao, G. F. Tu, Z. Wang and C. Z. Hao, “Influence of high
current pulsed electron beam (HCPEB) treatment on wear resistance of
hypereutectic Al-17.5Si and Al-20Si Alloys”, Materials Science Forum,
vol. 675-677, pp. 693-696, 2011.
[32] S. V. Konovalov, A. A. Atroshkina, Yu. F. Ivanov and V. E. Gromov,
“Evolution of dislocation substructures in fatigue loaded and failed
stainless steel with the intermediate electropulsing treatment”, Mater.
Sci. and Eng. A, vol. 527, pp. 3040-3043, May 2010.
[33] V. S. Ivanova and A. A. Shanyavskii, Quantitative Fractography.
Fatigue Fracture, Chelyabinsk: Metallurgiya, 1988.
[34] V. F. Terent’ev, Fatigue of Metallic Materials, Cambridge: Cambridge
Intern. Science Publ, 2004.
[35] O. V. Sosnin, V. V. Tsellermaer, Yu. F. Ivanov, V. E. Gromov and É. V.
Kozlov, “Evolution of the Structure and Carbon Atom Transfer in the
Zone of Fatigue Crack Growth in Ferrite-Pearlite Steel”, Rus. Phys. J.,
vol. 46, pp. 1047-1056, Oct.2003.
[36] L. Engel and H. Klingele, Scanning Electron Microscopy: Fracture,
Munich: Carl Hanse, 1982.