Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment

This work studied the ability of adipose tissue-derived
mesenchymal stromal cells (MSCs) to form stroma for expansion of
cord blood hematopoietic cells. We showed that 72-hour interaction
of MSCs with cord blood mononuclear cells (MNCs) in vitro at
atmospheric (20%) and low (5%) O2 conditions increased the
expression of ICAM-1, HCAM (at the beginning of interaction) on
MSCs. Viability of MSCs and MNCs were maintained at high level.
Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted
the proliferation of adhered MNCs to form the suspension containing
great number of hematopoietic colony-forming units, and this effect
was more pronounced at 5% O2. Thus, adipose-derived MSCs
supplied sufficient stromal support to cord blood MNCs both at 20%
and 5% О2, providing their adhesion with further expansion of new
generation of different hematopoietic lineages.





References:
[1] W. Wagner, R. Saffrich, and A.D. Ho, "The Stromal Activity of
Mesenchymal Stromal Cells”, Transfus. Med. Hemother., vol.34(3), pp.
185-193, 2008.
[2] C.C. Hofmeister, J. Zhang, K.L. Knight, P. Le, and P.J. Stiff, "Ex vivo
expansion of umbilical cord blood stem cells for transplantation:
growing knowledge from the hematopoietic niche”, Bone Marrow
Transplant., vol. 39(1), pp. 11-23, 2007.
[3] N. Alakel, D. Jing, K. Muller, M. Bornhauser, G. Ehninger, and R.
Ordemann, "Direct contact with mesenchymal stromal cells affects
migratory behavior and gene expression profile of CD133+
hematopoietic stem cells during ex vivo expansion”, Exp. Hematol., vol.
37(4), pp. 504-513, 2009.
[4] D. Jing, A.-V. Fonseca, N. Alakel, F.A. Fierro, K. Muller, M.
Bornhauser, et al., "Hematopoietic stem cells in co-culture with
mesenchymal stromal cells - modeling the niche compartments in vitro”,
Haematologica, vol. 95(4), pp. 542-550, 2010.
[5] D. Jing, M. Wobus, D.M. Poitz, M. Bornhäuser, G. Ehninger, and R.
Ordemann, "Oxygen tension plays a critical role in the hematopoietic
microenvironment in vitro”, Haematologica, vol. 97(3), pp. 331-339,
2012.
[6] A. Schäffler, and C. Büchler, "Concise Review: Adipose Tissue-Derived
Stromal Cells—Basic and Clinical Implications for Novel Cell-Based
Therapies”, Stem Cells, vol. 25(4), pp. 818-827, 2007.
[7] A.V. Guitart, M. Hammoud , P. DelloSbarba, Z. Ivanovic, and V.
Praloran, "Slow-cycling/quiescence balance of hematopoietic stem cells
is related to physiological gradient of oxygen”, Exp. Hematol., vol.
38(10), pp. 847-851, 2010.
[8] L.B. Buravkova, O.S. Grinakovskaya, E.R. Andreeva, A.P. Zhambalova,
and M.P. Kozionova, "Characteristics of human lipoaspirate-isolated
mesenchymal stromal cells cultivated under a lower oxygen tension”,
Tsitologiia, vol. 52(1), pp. 5-11, 2009. Russian.
[9] Yu.V. Rylova, E.R. Andreeva , and L.B. Buravkova ,"Proliferation and
metabolic status of mesenchymal stromal cells from the adipose tissue
cultivated at different levels of oxygen content”, Aviakosmicheskaya I
EkologicheskayaMeditsina, vol. 44(5), pp. 38-41, 2010. Russian.
[10] O.S. Grinakovskaya, E.R. Andreeva, L.B. Buravkova, Y.V. Rylova, and
G.Y. Kosovsky, "Low level of O2 inhibits commitment of cultured
mesenchymal stromal precursor cells from the adipose tissue in response
to osteogenic stimuli”, Bulletin of Experimental Biology and Medicine,
vol. 147 (6), pp. 760-763, 2009.
[11] L.B. Buravkova, E.R. Andreeva, and A.I. Grigoriev, "The impact of
oxygen in physiological regulation of human multipotentmesenchymal
cell functions”, Human Physiology, vol. 38(4), pp. 444-452, 2012.
[12] N. Haque, M.T. Rahman, N.H. Abu Kasim, and A.M. Alabsi, "Hypoxic
culture conditions as a solution for mesenchymal stem cell based
regenerative therapy”, ScientificWorldJournal, 632972, 2013.
[13] M.R. Koller, J.G. Bender, E.T. Papoutsakis, and W.M. Miller, "Effects
of synergistic cytokine combinations, low oxygen, and irradiated stroma
on the expansion of human cord blood progenitors”, Blood, vol. 80(2),
pp. 403-411, 1992.
[14] M. Hammoud, M. Vlaski, P. Duchez, J. Chevaleyre, X. Lafarge, J.M.
Boiron, et al., "Combination of low O(2) concentration and
mesenchymal stromal cells during culture of cord blood CD34(+) cells
improves the maintenance and proliferative capacity of hematopoietic
stem cells”, J. Cell. Physiol., vol. 227(6), pp. 2750-2758, 2012.
[15] Zuk P.A., Zhu M., Mizuno H., J. Huang, J.W. Futrell, A.J. Katz, et al.,
"Multilineage cells from human adipose tissue: implications for cellbased
therapies”, Tissue Eng., vol. 7, pp. 211-228, 2001.
[16] R.D. Rothlein, "A human intercellular adhesion molecule (ICAM-1)
distinct from LFA-1”, Journal of Immunology, vol, 137 (4), pp. 1270–
1274, 1986.
[17] M. Patarroyo, J. Prieto, J. Rincon, T. Timonen, C. Lundberg, L.
Lindbom, et al., "Leukocyte-cell adhesion: a molecular process
fundamental in leukocyte physiology”, Immunol. Rev., vol. 114, pp. 67-
108, 1990.
[18] L. Yang, R.M. Froio, T.E. Sciuto, A.M. Dvorak, R. Alon, and F.W. Luscinskas, "ICAM-1 regulates neutrophil adhesion and transcellular
migration of TNF-α-activated vascular endothelium under flow”, Blood,
vol. 106(2), pp. 584–592, 2005.
[19] J. Teixidó, M.E. Hemler, J.S. Greenberger, and P. Anklesaria, "Role of
β1, and β2 Integrins in the Adhesion of Human CD34hi Stem Cells to
Bone Marrow Stroma”, J. Clin. Invest., vol. 90(2), pp. 358-367, 1992.
[20] S. Goodison, V. Urquidi, and D. Tarin, "CD44 cell adhesion molecules”,
Mol. Pathol., vol. 52(4), pp. 189-196, 1999.
[21] W. Wagner, F. Wein, C. Roderburg, R. Saffrich, A. Diehlmann, V.
Eckstein, et al., "Adhesion of human hematopoietic progenitor cells to
mesenchymal stromal cells involves CD44”, Cells Tissues Organs, vol.
188(1-2), pp. 160-169, 2008.
[22] W. Wagner, F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U.
Krause, et al., "Comparative characteristics of mesenchymal stem cells
from human bone marrow, adipose tissue, and umbilical cord blood”,
Exp. Hematol., vol. 33(11), pp.1402-1416, 2005.
[23] P. Eliasson, and J.I. Jönsson, "The hematopoietic stem cell niche: low in
oxygen but a nice place to be”, J. Cell. Physiol., vol. 222(1), pp. 17-22,
2010.