Statistical Optimization of Medium Components for Biomass Production of Chlorella pyrenoidosa under Autotrophic Conditions and Evaluation of Its Biochemical Composition under Stress Conditions

The aim of the present work was to statistically design
an autotrophic medium for maximum biomass production by
Chlorella pyrenoidosa using response surface methodology. After
evaluating one factor at a time approach, K2HPO4, KNO3,
MgSO4.7H2O and NaHCO3 were preferred over the other
components of the fog’s medium as most critical autotrophic medium
components. The study showed that the maximum biomass yield was
achieved while the concentrations of MgSO4.7H2O, K2HPO4, KNO3
and NaHCO3 were 0.409 g/L, 0.24 g/L, 1.033 g/L, and 3.265 g/L,
respectively. The study reported that the biomass productivity of C.
pyrenoidosa improved from 0.14 g/L in defined fog’s medium to 1.40
g/L in modified fog’s medium resulting 10 fold increase. The
biochemical composition biosynthesis of C. pyrenoidosa was altered
using nitrogen limiting stress bringing about 5.23 fold increase in
lipid content than control (cell without stress), as analyzed by FTIR
integration method.





References:
[1] D. Klein-Marcuschamer, Y. Chisti, J. R. Benemann, and D. Lewis, “A
matter of detail: assessing the true potential of microalgal biofuels,”
Biotechnol. Bioeng., vol. 110, pp. 2317–2322, 2013.
[2] O. Pulz, K. Scheibenbogen, and W. Gross, “Biotechnology with
cyanobacteria and microalgae,” In Biotechnology, H.-J. Rehm, G. Reed,
Ed. vol. 10, VCH: Weinheim, 2001, pp. 105–136.
[3] K. Skjanes, C. Rebours, and P. Lindblad, “Potential for green
microalgae to produce hydrogen, pharmaceuticals and other high value
products in a combined process,” Crit. Rev. Biotechnol., vol. 1, pp. 44,
2012.
[4] T. M. Mata, A. A. Martins, and N. S. Caetano, “Microalgae for biodiesel
production and other applications: a review,” Renew. Sustain. Energy
Rev., vol. 14, pp. 217–232, 2010.
[5] A. F. Clarens, E. P. Resurreccion, M. A. White, and L. M. Colosi,
“Environmental life cycle comparison of algae to other bioenergy
feedstocks,” Environ. Sci. Technol., vol. 44, pp. 1813–1819, 2010.
[6] N. H. Norsker, M. J. Barbosa, M. H. Vermue, and R. H. Wijffels,
“Microalgal production - a close look at the economics,” Biotechnol.
Adv., vol. 29, pp. 24–27, 2011.
[7] L. F. Razon, and R. R. Tan, “Net energy analysis of the production of
biodiesel and biogas from the microalgae: Haematococcus pluvialis and
Nannochloropsis,” Appl. Energy, vol. 88, pp. 3507–3514, 2011.
[8] K. Soratana, and A. E. Landis, “Evaluating industrial symbiosis and
algae cultivation from a life cycle perspective,” Bioresour. Technol., vol.
102, pp. 6892–6901, 2011.
[9] L. Campenni, B. P. Nobre, C.A. Santos, A. C. Oliveira, M. R. Aires-
Barros, and A. M. F. Palavra, “Carotenoid and lipid production by the
autotrophicmicroalga Chlorella protothecoides under nutritional,
salinity, and luminosity stress conditions,” Appl. Microbiol. Biotechnol.,
vol. 97, pp. 1383–1393, 2013.
[10] M. A. Carriquiry, X. Du, and G. R. Timilsina, “Second generation
biofuels: economics and policies,” Energy Policy, vol. 39, pp. 4222–
4234, 2011.
[11] B. P. Nobre, F. Villalobos, B. E. Barragán, A. C. Oliveira, A. P. Batista,
P. A. S. S. Marques, R. L. Mendes, H. Sovová, A. F. Palavra, and L.
Gouveia, “A biorefinery from Nannochloropsis sp. microalga -
extraction of oils and pigments. Production of biohydrogen from the
leftover biomass,” Bioresour. Technol., vol. 135, pp. 128–136. 2013.
[12] A. Singh, P. S. Nigam, and J. D. Murphy, “Mechanism and challenges in
commercialisation of algal biofuels,” Bioresour. Technol., vol. 102, pp.
26–34, 2011a.
[13] D. Yasar, “Vitamin E, (α-tocopherol) production by the marine
microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen
limitation,” Aquaculture, vol. 272, pp. 717–722, 2007.
[14] F. Chen, and Y. Zhang, “High cell density mixotrophic culture of
Spirulina platensis on glucose for phycocyanin production using a fedbatch
system,” Enzyme Microb. Technol, vol. 20, pp. 221–224,1997.
[15] H. Yu, S. Jia, and Y. Dai, “Growth characteristics of the cyanobacterium
Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic
cultivation,” J. Appl. Phycol., vol. 21, pp. 127–133, 2009.
[16] R. Gladue, and J. Maxey, “Microalgal feeds for aquaculture,” J. Appl.
Phycol., vol., 6, pp. 131-141, 1994.
[17] J. Berges, D. Franklin, and P. Harrison, “Evolution of an artificial
seawater medium: improvements in enriched seawater, artificial water
over the last two decades,” J. Phycol., vol., 37, pp. 1138–1145, 2001.
[18] G. Markou, and E. Nerantzis, “Microalgae for high-value compounds
and biofuels production: A review with focus on cultivation under stress
conditions,” Biotechnol. Adv., vol. 31, pp.1532-1542, 2013.
[19] W. Q. Guo, N. Q. Ren, X. J. Wang, W. S. Xiang, J. Ding, and Y. You,
“Optimization of culture conditions for hydrogen production by
Ethanoligenens harbinense B49 using response surface methodology,”
Bioresour. Technol., vol. 100, pp. 1192–1196, 2009.
[20] Y. Li, F. Cui, Z. Liu, Y. Xu, and H. Zhao, “Improvement of xylanase
production by Penicillium oxalicum ZH-30 using response surface
methodology,” Enzyme Microb. Technol., vol. 40, pp. 1381–1388, 2007.
[21] G. Q. Liu, and X. L. Wang, “Optimization of critical medium
components using response surface methodology for biomass and
extracellular polysaccharide production by Agaricus blazei,” Appl.
Microbiol. Biotechnol., vol. 74, pp. 78–83, 2007.
[22] M. S. Tanyildizi, D. Ozer, and M. Elibol M, “Optimization of -amylase
production by Bacillus sp. using response surface methodology,”
Process Biochem., vol. 40, pp. 2291–2296, 2005.
[23] T. Heredia-Arroyo, W. Wei, R. Ruan, and B. Hu, “Mixotrophic
cultivation of Chlorella vulgaris and its potential application for the oil
accumulation from non-sugar materials,” Biomass Bioenergy, vol. 35,
pp. 2245–53, 2011.
[24] F. Y. Feng, W. Yang, G. Z. Jiang, Y. N. Xu, and T. Y. Kuang,
“Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae)
by addition of glucose and sodium thiosulphate to culture medium,”
Process Biochem., vol. 40, pp. 1315–1318, 2005.
[25] A. Bhatnagar, S. Chinnasamy, M. Singh, and K. C. Das, “Renewable
biomass production by mixotrophic algae in the presence of various
carbon sources and waste-waters,” Appl. Energy, vol. 88, pp. 3425–
3431, 2011.
[26] M. Azma, M. S. Mohamed, R. Mohamad, R. A. Rahim, and A. B. Ariff,
“Improvement of medium composition for heterotrophic cultivation of
green microalgae, Tetraselmis suecica, using response surface
methodology,” Biochemical Eng. J., vol.53, pp.187-195, 2010.
[27] Y. Cheng, C. Lu, and W. Q. Gao, “Algae-based biodiesel production and
optimization using sugar cane as the feedstock,” Energy Fuels, vol. 23,
pp. 4166–4173, 2009.
[28] W. B. Kong, S. F. Hua, H. Cao, Y. W. Mu, H. Yang, H. Song, and C. G.
Xia, “Optimization of mixotrophic medium components for biomass
production and biochemical composition biosynthesis by Chlorella
vulgaris using response surface methodology,” J. Taiwan Int. Chem.
Eng., vol. 43, pp. 360-367, 2011.
[29] Z. Li, H. Yuan, J. Yang, and B. Li, “Optimization of the biomass
production of oil algae Chlorella minutissima UTEX2341,” Bioresour.
Technol., vol. 102, pp. 9128–9134, 2011.
[30] B. Ryu, K. H. Kanfg, D. H. Ngo, Z. J, Qian, and S. K. Kim, “Statistical
optimization of microalgae Pavlova Lutheri cultivation conditions and
its fermentation conditions by yeast, Candida Rugopelliculosa,”
Bioresour. Technol., vol. 107, pp. 307-313, 2011.
[31] T. Xie, Y. Sun, K. Du, B. L, R. cheng, and Y. Zhang, “Optimization of
heterotrophic cultivation of Chlorella sp. For oil production,” Bioresour.
Technol., vol. 118, pp. 235-242, 2012.
[32] P. Bondioli, L. Della Bella, G. Rivolta, G. Chini Zittelli, N. Bassi, L.
Rodolfi, D. Casini, M. Prussi, D. Chiaramonti, and M. R. Tredici, “Oil
production by the marine microalgae Nannochloropsis sp. F&M-M24
and Tetraselmis suecica F&M-M33,” Bioresour. Technol., vol. 114, pp.
567–572, 2012.
[33] S. Go, S. J. Lee, G. T. Jeong, and S. K. Kim, “Factors affecting the
growth and the oil accumulation of marine microalgae Tetraselmis
suecica,” Bioprocess Biosyst. Eng., vol. 35, no. 1–2, pp. 145–150, 2012.
[34] C. H. Su, L. J. Chien, J. Gomes, Y. S. Lin, Y. K. Yu, J. S. Liou, and R. J.
Syu, “Factors affecting lipid accumulation by Nannochloropsis oculata
in a two-stage cultivation process,” J. Appl. Phycol., vol. 23, no. 5, pp.
903–908, 2011.
[35] J. N. Murdock, D. L. Wetzel, “FTIR microspectroscopy enhances
biological and ecological analysis of algae,” Appl. Spectrosc. Rev., vol.
44, pp. 335-361, 2009.
[36] A. M. A. Pistorius, W. J. DeGrip, and T. A. Egorova-Zachernyuk,
“Monitoring of biomass composition from microbiological sources by
means of FT-IR spectroscopy,” Biotechnol. Bioeng., vol. 103, no. 1, pp.
123-129, 2009.
[37] M. Giordano, M. Kansiz, P. Heraud, J. Beardall,B. Wood, and D.
McNaughton, “Fourier transform infrared spectroscopy as a novel tool
to investigate changes in intracellular macromolecular pools in the
marine microalga Chaetoceros muellerii (Bacillariophyceae),” J.
Phycol., vol. 37, pp. 271–279, 2001.
[38] P. Heraud, B. R. Wood, M. J. Tobin, J. Beardall, and D. McNaughton,
“Mapping of nutrient-induced biochemical changes in living algal cells
using synchrotron infrared microspectroscopy,” FEMS Microbiol. Lett.,
vol. 249, pp. 219–225, 2005.
[39] K. Stehfest, J. Toepel, and C. Wilhelm, “The application of micro-FTIR
spectroscopy to analyze nutrient stress-related changes in biomass
composition of phytoplankton algae,” Plant Physiol. Biochem., vol. 43,
pp. 717–726, 2005.
[40] A. P. Dean, J. M. Nicholson, and D. C. Sigee, “Impact of phosphorus
quota and growth phase on carbon allocation in Chlamydomonas
reinhardtii: an FTIR microspectroscopy study,” Eur. J. Phycol., vol. 43,
pp. 345–354, 2008.
[41] D. C. Sigee, F. Bahram, B. Estrada, R. E. Webster, and A. P. Dean, “The
influence of phosphorus availability on carbon allocation and P quota in
Scenedesmus subspicatus: a synchrotron-based FTIR analysis,”
Phycologia, vol. 46, pp. 583–592, 2007.
[42] G. E. Fogg, “Algal Culture and Phytoplankton Ecology,” The University
of Wisconsin Press, Wisconsin, 1975.
[43] L. Huiping, Z. Guoqun, N. Shanting, and L. Yiguo, “Technologic
parameter optimization of gas quenching process using response surface
method,” Comput. Mater. Sci., vol. 38, no. 3, pp. 561–570, 2007.
[44] J. Segurola, N. S. Allen, M. Edge, and A. M. Mahon, “Design of eutectic
photo initiator blends for UV/curable acrylated printing inks and
coatings,” Prog. Org. Coat, vol. 37, no. 1, pp. 23–37, 1999.
[45] M. Muthukumar, D. Mohan, and M. Rajendran, “Optimization of mix
proportions of mineral aggregates using Box Behnken design of
experiments,” Cem. Concr. Compos., vol. 25, no. 7, pp. 751–758, 2003.
[46] H. L. Liu, Y. W. Lan, and Y. C. Heng, “Optimal production of sulphuric
acid by Thiobacillus thiooxidans using response surface methodology,”
Process Biochem., vol. 39, no. 12, pp. 1953–1961, 2004.
[47] C. H. Hsieh, and W. T. Wu, “Cultivation of microalgae for oil
production with a cultivation strategy of urea limitation,” Bioresour.
Technol., vol. 100, pp. 3921-3926, 2009.
[48] Z. Y. Liu, G. C. Wang, and B. C. Zhou, “Effect of iron on growth and
lipid lipid accumulation in Chlorella vulgaris,” Bioresour. Technol., vol.
99, pp. 4717-4722, 2008.
[49] V. Ordog, W. A. Stirk, P. Bálint,J. Van Staden, and C. Lovasz,
“Changes in lipid, protein and pigment concentrations in nitrogenstressed
Chlorella minutissima cultures,” J. Appl. Phycol., vol. 24, pp.
907–914, 2012.
[50] M. J. Behrenfeld, K. Worthington, R. M. Sherrell, F. P. Chavez, P.
Strutton, M. McPhaden, and D. M. Shea, “Controls on tropical Pacific
Ocean productivity revealed through nutrient stress diagnostics,” Nature,
vol. 442, pp. 1025–1028, 2006.
[51] T. Jakob, H. Wagner, K. Stehfest, and C. Wilhelm, “A complete energy
balance from photons to new biomass reveals a light- and nutrientdependent
variability in the metabolic costs of carbon assimilation,” J.
Exp. Bot., vol. 58, no. 8, pp. 2101–2112, 2007.
[52] A. P. Dean, D. C. Sigee, B. Estrada, and J. K. Pittman, “Using FTIR
spectroscopy for rapid determination of lipid accumulation in response
to nitrogen limitation in freshwater microalgae,” Bioresour. Technol.,
vol. 101, pp. 4499–4507, 2010.
[53] C. T. Evans, A. H. Scragg, and C. Ratledge, “Reguladtion of Citrate
Efflux from Mitochondria Oleaginou and Non‐Oleaginous Yeasts by
Adenine Nucleotides,” Eur. J. Biochem., vol. 132, no. 3, pp. 609-615,
1983.
[54] M. Siaut, S. Cuine, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A.
Beyly, F. Beisson, C. Triantaphylides, Y. H. Li-Beisson, and G. Peltier,
“Oil accumulation in the model green alga Chlamydomonas reinhardtii:
characterization, variability between common laboratory strains and
relationship with starch reserves,” BMC Biotechnol., vol. 11, pp. 7-21,
2011.
[55] N. M. D. Courchesne, A. Parisien, B. Wang, and C. Q. Lan,
“Enhancement of lipid production using biochemical, genetic and
transcription factor engineering approaches,” J. Biotechnol., vol.141, pp.
31–41, 2009.