Research of the Main Indexes of Freshness Anchovy (Engraulis engrasicolus Linnaeus, 1758) and Sardines (Sardina pilchardus Walbaum 1792) of Mediterranean

Anchovy (Engraulis Encrasicholus) and sardine (Sardina Pilchardus) are blue fishes linked to our alimentary tradition of Mediterranean. In our work, particularly, we tested for the first time physical and enzymatic methods to verify the freshness of species of blue fish, anchovy and sardine of Mediterranean. In connection with to the lowering of the pH after post-mortem stage we assisted to a increase in proteolytic activity of calpaine and catpsine. Already after 2 h in post-mortem there was a significant increase.




References:
[1] Ozogul, Y., Ozyurt, G., Ozogul, F., Kuley, E., and Polat, A. 2005.
Freshness assessment of European eel (Anguilla anguilla) by sensory,
chimica and microbiological methods. Food Chem., 92, 745-751,
[2] Ouali A. 1992. Proteolytic and physiochemical mechanism involved in
meat texture development. Biochimie, 74, 251-265
[3] Rehbein H. 1979. Development of an enzymatic method to differenziate
fresh and sea-frozen and thawed fish fillets. Z Lebensm Unters-Forsch.
169: 263-265
[4] Uddiin M, Okazaki E. 2004. Classification of fresh and frozen-thawed
fish by near-infrared spectroscopy. J Food Sci. 69: C665-668.
[5] Bennett, R. & M. Hamilton, 1986. Consumer acceptability of cod and
whiting after chilled storage and freezing and thawing. Journal of Food
Technology, 21, 311−317.
[6] Vyncke, W., 1983. Shelf life of thawed cod fillet kept in ice. Zeitschrift
f├╝r Lebensmittel Untersuchung und Forschung, 177,1921.
[7] Ho M.L., Chen G.H., Jiang S.T. 1999. Effects of mackerel cathepsins L
and L-like, and calpain on the degradation on mackerel surimi. Fish. Sci.
66: 558-568.
[8] Bito M., Yamada K., Mikuma Y., Amano K. (1983). Tokay Reg. Fish.
Res. Lab., No. 109, 89-96.
[9] Sigholt T., Erikson U., Rustad T., Johansen S., Nordvedt T.S., Seland A.
(1997). Handling stress and storage temperature affect meat quality of
farmed-raised atlantic salmon (Salmo salar). J. Food Sci. 62: 898-905.
[10] Jiang S.T., Wang Y.T., Gau B.S.,, Chen C.S. (1990). Role of pepstatinsensitive
proteases on the postmortem changes of tilapia (Tilapia nilotica
X Tilapia aurea) muscle myofibrils. J. Agric. Food. Chem. 38: 1464-
1468.
[11] Yamashita M, Konagaya S. (1990). Participation of Cathepsin L into
exstensive softening of muscle of chum salmon caught during spawning
migration. Nippon Suisan Gakkaishi, 56: 1271-1272.
[12] Geesink G.H., Morton J.D., Kent M.P., Bickerstaffe R. (2000). Partial
purification and characterization of Chinook salmon (Oncorhynchus
tshawytscha) calpains and an evaluation of their role in postmortem
proteolysis. J. Food Sci. 65 1318-1324.
[13] Aoki T., Ueno R. (1997). Involvement of cathepsins B and L in the postmortem
autolysis of mackerel muscle. Food Res. Int. 30: 585-591.
[14] Ho M.L., Chen G.H., Jiang S.T. (1999). Effects of mackerel cathepsins
L and L-like, and calpain on the degradation on mackerel surimi. Fish.
Sci. 66: 558-568.
[15] Ogata H., Aranishi F., Hara K., Osatomi K., Ishihara T. (1998).
Proteolytic degradation of myofibrillar components by carp cathepsin L.
J Sci Food Agric, 76, 499-504.
[16] Ladrat C., Chaplet M., Verrez-Bagnis V., Noël J., Fleurence J. (2002). In
vitro proteolysis of myofibrillar and sarcoplasmatic proteins of white
muscle of sea bass (Dicentrarchus labrax L.): effects of cathepsins B, D
and L. Food Chem. 81: 517-525.
[17] Masashi A., Haruhiko T., Yutuka S., Morihiko S. (1991). Post-Mortem
tenderization of fish muscle proceeds independently of resolution of
rigor mortis. Nippon Suisan Gakkashi 57(6), 1165-1169.