Piezoelectric Micro-generator Characterization for Energy Harvesting Application

This paper presents analysis and characterization of
a piezoelectric micro-generator for energy harvesting application.
A low-cost experimental prototype was designed to operate as
piezoelectric micro-generator in the laboratory. An input acceleration
of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset
voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated
a maximum average power of 432.4μW (linear mass position =
25mm) and an average power of 543.3μW (angular mass position
= 35°). These promising results show that the prototype can be
considered for low consumption load application as an energy
harvesting micro-generator.




References:
[1] X. Zhang, J. Fang, F. Meng e X. Wei, A Novel Self-Powered Wireless
Sensor Node Based on Energy Harvesting for Mechanical Vibration
Monitoring, Hindawi Publishing Corporation, p. 5, 2014.
[2] H. Liu, C. Quan, C. J. Tay, T. Kobayashi and C. Lee, ”A MEMS-based
piezoelectric cantilever patterned with PZT thin film array for harvesting
energy from low frequency vibration,” Physics Procedia, vol. 19, pp.
129-133, 2011.
[3] R. Oliquino, S. Islam, H. Eren, Effects of Types of Faults on Generator
Vibration Signatures, in: Australasian Universities Power Engineering
Conference, 2003: pp. 16.
[4] F. Al-Badour, M. Sunar e L. Cheded, Vibration analysis of rotating
machinery using timefrequency analysis and wavelet techniques,
Mechanical Systems and Signal Processing, vol. 25, pp. 2083-2101,
2011.
[5] J. K. Sinha e K. Elbhbah, A future possibility of vibration based
condition monitoring of rotating machines, Mechanical Systems and
Signal Processing, vol. 34, pp. 231-240, 2012.
[6] P. Poddera, A. Amann e S. Roy, A bistable electromagnetic micro-power
generator using FR4-based, Sensors and Actuators A: Physical, vol. 227,
pp. 39-47, 2015.
[7] R. Moraisa, N. Silva, P.Santos, C. Frias, J. Ferreira, A. Ramos, J. Simesd
e J. a. M. Reise, Permanent magnet vibration power generator as an
embedded mechanism for smart hip prosthesis, Procedia Engineering,
vol. 5, pp. 766-769, 2012.
[8] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis,
J. Rabaey, P. Wright e V. Sundararajan, Improving power output for
vibration-based energy scavengers, IEEE Pervasive Computing, vol. 4,
2005.
[9] S. Roundy, P. K. Wright e J. Rabaey, A study of low level vibrations as
a power source for wireless sensor nodes, Computer Communications,
vol. 26, pp. 1131-1144, 2003.
[10] S. Roundy e P. K. Wright, A piezoelectric vibration based generator for
wireless electronics, Smart Materials and Structures, vol. 3, p. 5, 2004.
[11] B. Pkosawski, P. Krasiski e A. Napieralski, Power processing circuits
for wireless sensor nodes utilizing energy harvested from mechanical
vibrations, em Proceedings of the 18th International Conference Mixed
Design of Integrated Circuits and Systems - MIXDES 2011, Gliwice,
Poland, 2011.
[12] C. T. Sherman, P. K. Wright e R. M. White, Validation and testing of
a MEMS piezoelectric permanent magnet current sensor with vibration
canceling, Sensors and Actuators A: Physical, vol. 248, pp. 206-2013,
2016.
[13] X.-r. Chen, T.-q. Yang, W. Wang e X. Yao, Vibration energy harvesting
with a clamped piezoelectric circular diaphragm, Elsevier: Ceramics
International, vol. 38, pp. 271 - 274, 2011.
[14] W.-J. Wu, Y.-F. Chen, Y.-Y. Chen, C.-S. Wang e Y.-H. Chen, Smart
Wireless Sensor Network Powered by Random Ambient Vibrations, em
IEEE International Conference on Systems, Man, Taipei, Taiwan, 2006.
[15] N. Mohajer e M. Mahjoob, Modeling and Electrical Optimization of
A Designed Piezoelectric-Based Vibration Energy Harvesting System,
em RSI/ISM International Conference on Robotics and Mechatronics,
Teharan, 2013.
[16] C. Williams e R. Yates , Analysis of a micro-electric generator for
microsystems, Sensors and Actuators A, p. 52, 1996.
[17] F. Lu, H. P. Lee e S. P. Lim, Modeling and analysis of micro piezoelectric
power generators for micro-electromechanical-systems applications,
Smart Materials and Structures, vol. 13, n 1, 2003.
[18] T. Galchev, E. E. Aktakka e K. Najafi, A Piezoelectric Parametric
Frequency Increased Generator for Harvesting Low-Frequency
Vibrations, Journal of Microelectromechanical Systems, vol. 21, 2012.
[19] M. Niroomand e H. R. Foroughi, A rotary electromagnetic
microgenerator for energy harvesting from human motions, Journal of
Applied Research and Technology, vol. 14, pp. 269-267, 2016.