Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.




References:
[1] A. F. Blumberg and G. L. Mellor, A description of a three-dimensional
coastal ocean circulation model, In N. S. Heaps, editor, Three-
Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences,
American Geophysical Union, Washington, DC, 4(1987), 1-16.
[2] C. Amante and B. W. Eakins, 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis (ETOPO1), NOAA, National
Geophysical Data Center, Boulder, Colorado, U.S.A. (2008), 21.
[3] G. J. Komen, K. Hasselmann and S. Hasselmann, On the existence of
a fully developed windsea spectrum, Journal of Physical Oceanography,
14(1984), 1271-1285.
[4] G. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and
P.A.E.M. Janseen, Dynamics and modelling of ocean waves, Cambridge
University Press, UK. (1994), 532.
[5] G. L. Mellor, An equation of state for numerical models of oceans and
estuaries, Journal of Atmospheric and Oceanic Technology, 8(1991),
609-611.
[6] G. Ph. van Vledder, Directional response of wind waves to turning
winds, Commun. Hydraul. Geotech. Eng., Delft University of Technology,
The Netherlands, 1990.
[7] H. Gunther, S. Hasselmann and P.A.E.M. Janssen, WAM model Cycle
4, Technical Report No. 4, Hamburg, Germany, 1992.
[8] H. L. Tolman, Wind wave propagation in tidal seas, Commun. Hydraul.
Geotech. Eng., Delft University of Technology, The Netherlands, 1990.
[9] J. Monbaliu, R. Padilla-Hernandez, J. C. Hargreaves, J. C. Carretero-
Albiach, W. Luo, M. Sclavo and H. Gunther, The spectral wave model
WAM adapted for applications with high spatial resolution, Coastal
Engineering, 41(2000), 4-62.
[10] K. F. Bowden, Physical oceanography of coastal waters, Ellis Horwood,
Southampton, UK., (1983), 302.
[11] K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright,
K. Enke, J. I. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman,
A. Meerbrug, P. Mauller, D. J. Olvers, K. Richter, W. Sell and H.
Walden, Measurements of wind-wave growth and swell decay during the
Joint North Sea Wave Project (JONSWAP), Deutsche Hydrographische
Zeitschrift, 8(1973), 95.
[12] M. D. Powell, P. J. Vivkery and T. A. Reinhold, Reduced drag coefficient
for high wind speeds in tropical cyclones, Nature, 422(2003), 278-283.
[13] M. O. Edwards, Global Gridded Elevation and Bathymetry on 5-Minute
Geographic Grid (ETOPO5), NOAA, National Geophysical Data Center,
Boulder, Colorado, U.S.A., 1989.
[14] M. Xia, L. Xie, L. J. Pietrafesa and M. Peng, A numerical study of
storm surge in the cape fear river estuary and adjacent coast, Journal of
Coastal Research, 24(2008), 159-167.
[15] N. Aschariyaphotha, P. Wongwises, S. Wongwises, U. W. Humphries
and X. You, Simulation of seasonal circulations and thermohaline
variabilities in the Gulf of Thailand, Advances in Atmospheric Sciences,
25(2008), 489-506.
[16] N. Booij, R. C. Ris, and L. H. Holthuijsen, A third-generation wave
model for coastal regions Part 1, Model description and validation,
Journal of Geophysical Research, 104(1999), 7649-7666.
[17] P.A.E.M. Janssen, Quasi-linear theory of wind-wave generation applied
to wave forecasting, Journal of Physical Oceanography, 19(1991), 745-
754.
[18] P. A. Wittmann and P. D. Farrar, Global, regional and coastal wave
prediction, Marine Technology Society Journal, 31(1997), 76-82.
[19] P. Harr, R. Ellsberry, T. Hogan and W. Clune, North Pacific cyclone sea-
level pressure errors with NOGAPS, Weather and Forecasting, 7(1992),
3.
[20] P. H. LeBlond and L. A. Mysak, Waves in the ocean. Elsevier, Amsterdam,
1978.
[21] S. Hasselmann, K. Hasselmann, E. Bauer, P.A.E.M. Janssen, G. J.
Komen, L. Bertotti, P. Lionello, A. Guillaume, V. C. Cardone, J. A.
Greenwood, M. Reistad, L. Zambresky and J. A. Ewing, The WAM
model-a third generation ocean wave prediction model, Journal of
Physical Oceanography, 18(1988), 1775-1810.
[22] S. Hasselmann, K. Hasselmann, J. H. Allender and T. P. Barnett,
Computations and parameterizations of the nonlinear energy transfer
in a gravity-wave spectrum, Part II: Parameterizations of the nonlinear
energy transfer for application in wave models, Journal of Physical
Oceanography, 15(1985), 1378-1391.
[23] S. Levitus, R. Burgett and T. Boyer, World Ocean Atlas: Salinity, NOAA
Atlas NESDIS 3, U. S. Government Printing Office, Washington D.C.,
U.S.A., 3(1994b), 99.
[24] S. Levitus and T. Boyer, World Ocean Atlas: Temperature, NOAA Atlas
NESDIS 4, U. S. Government Printing Office, Washington D.C., U.S.A.,
4(1994a), 117.
[25] S. Vongvisessomjai, Impacts of Typhoon Vae and Linda on wind waves
in the upper gulf of Thailand and east coast, Songklanakarin Journal of
Science and Technology, 29(2007), 1199-1216.
[26] S. Vongvisessomjai, Tropical cyclone disasters in the Gulf of Thailand,
Songklanakarin Journal of Science and Technology, 31(2009), 213-227.
[27] S. Vongvisessomjai, P. Chatanantavet and P. Srivihok, Interaction of
tide and salinity barrier: Limitation of numerical model, Songklanakarin
Journal of Science and Technology, 30(2008), 531-538.
[28] T. Brikshavana and A. Luadsong, Splitting modified Donor-Cell
schemes for spectral action balance equation, International Journal of
Computational and Mathematical Sciences, 4(2010), 214-222.
[29] T. D. Pugh, Tides, Surges and Mean Sea-Level, John Wiley & Sons,
London, UK., (1987), 472.
[30] T. Ezer, H. Arango and A. F. Shchepetkin, Developments in terrain-
following ocean models: intercomparison of numerical aspects, Ocean
Modelling, 4(2002), 249-267.
[31] T. F. Hogan and T. E. Rosmond, The description of the Navy Operational
Global Atmospheric System-s spectral forecast model, Monthly Weather
Review, 119(1991), 1786-1815.
[32] W. G. Large and S. Pond, Open ocean momentum fluxes in moderate
to strong winds, Journal of Physical Oceanography, 11(1981), 324-336.
[33] W. Wannawong, U. W. Humphries and A. Luadsong, The application
of curvilinear coordinate for primitive equation in the Gulf of Thailand,
Thai Journal of Mathematics, 6(2008), 89-108.
[34] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai
and W. Lueangaram, A numerical study of two coordinates for energy
balance equations by wave model, Thai Journal of Mathematics,
8(2010), 197-214.
[35] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai
and W. Lueangaram, Numerical modeling and computation of storm
surge for primitive equation by hydrodynamic model, Thai Journal of
Mathematics, 8(2010), 347-363.