Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode

A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the device at the operating frequency (122 GHz) with input power density of 1010 Watt/m2 is about 35 dB for hypothetical parasitic series resistance of zero ohm (estimated junction temperature = 500 K). Results show that the noise measure increases as the value of parasitic resistance increases.




References:
[1] T. A. Midford and R. L. Bernick, "Millimeter Wave CW IMPATT
diodes and Oscillators", IEEE Trans. Microwave Theory Tech., vol. 27,
pp. 483-492, 1979.
[2] Y. Chang, J. M. Hellum, J. A. Paul and K. P. Weller, "Millimeter-Wave
IMPATT Sources for Communication Applications", IEEE MTT-S
International Microwave Symposium Digest, pp. 216-219, 1977.
[3] W. W. Gray, L. Kikushima, N. P. Morentc and R. J. Wagner, "Applying
IMPATT Power Sources to Modern Microwave Systems". IEEE
Journal of Solid-State Circuits, vol. 4, pp. 409-413, 1969.
[4] M. Mukherjee and N. Mazumder, "Effect of charge-bump on highfrequency
characteristics of ╬▒-SiC based double drift ATT diodes at
MM-wave window frequencies", IETE J. of Research, vol. 55, pp. 118-
127, 2009.
[5] G. N. Dash and S. P. Pati, "A generalized simulation method for
MITATT-mode operation and studies on the influence of tunnel current
on IMPATT properties", Semicond. Sci. Technology, vol. 7, pp. 222-
230, 1992.
[6] M. Mukherjee and N. Mazumder, "Comparison of photo sensitivity of
Si and InP IMPATT diodes at 220 GHz", Proc. of IEEE International
conference on Microelectronics, Electronics and Electronic
Technologies (IEEE-MEET 2007), University of Zagreb, Croatia, pp.
72-77, 2007.
[7] J. P. Banerjee, S. P. Pati and S. K. Roy, "Computer simulation
experiment on the mm-wave properties of InP double drift IMPATTs",
Phys. Status Solidi, vol. 109, pp. 359-364, 1988.
[8] M. Mukherjee, S. Banerjee and J. P. Banerjee, "Dynamic characteristics
of iii-v and iv-iv semiconductor based transit time devices in the
terahertz regime: a comparative analysis", Terahertz Science and
Technology, vol. 3, pp. 97-109, 2010.
[9] M. J. Bailey, "Heterojunction IMPATT diodes", IEEE Transactions on
Electron Devices, vol. 39, issue 8, pp. 1829-1834, 1992.
[10] J. C. de Jaeger, R. Kozlowski, G. Salmer, "Expected performances of
GaAlAs/GaAs double-velocity heterojunction impatt diodes",
Electronics Letters, vol. 20, issue 19, pp. 803-804, 1984.
[11] J. K. Mishra, A. K. Panda, G. N. Dash, "An extremely low noise
heterojunction IMPATT", IEEE Transactions on Electron Devices,
vol. 44, issue 12, pp. 2143-2148 , 1997.
[12] A. S. Tager, "Current fluctuations in semiconductor (dielectric) under
the conditions of impact ionosation and avalanche breakdown" Sov.
Phys. Solid State, vol. 4, pp. 1919, 1965.
[13] M. E. Hines, "Noise theory of Read type avalanche diode", IEEE Trans.
Electron Devices, vol. ED-13, pp. 57, 1966.
[14] H. K. Gummel and J. L. Blue, "A Small-Signal Theory of Avalanche
Noise in IMPATT Diodes", IEEE Trans. Electron Devices, vol. ED-14,
No. 9, pp. 569-580, 1967.
[15] H. A. Haus, H. Statz and R. A. Pucel, "Optimum noise measure of
IMPATT diode", IEEE Trans. on MTT, vol. MTT-19, pp. 801, 1971.
[16] R. L. Kuvas, "Noise in IMPATT diodes Intrinsic properties", IEEE
Trans. Electron Devices, vol. ED-19, pp. 220, 1972.
[17] G. N. Dash, J. K. Mishra and A. K. Panda, "Noise in Mixed Tunneling
Avalanche Transit Time (MITATT) diodes", Solid-State Electronics,
vol. 39, no. 10, pp. 1473-1479, 1996.
[18] S. K. Roy, J. P. Banerjee and S. P. Pati, "Computer methods for the dc
field and carrier current profiles in impatt devices starting from the field
extremum in the depletion layer", Proc. of NASECODE-I Conf. on
Numerical Analysis of Semiconductor Devices (Dublin: Boole Press),
pp. 266, 1979.
[19] S. K. Roy, J. P. Banerjee and S. P. Pati, "A computer analysis of the
distribution of high frequency negative resistance in the depletion
layers of impatt diodes", Proc. of NASECODE-IV Conf. on Numerical
Analysis of Semiconductor Devices (Dublin: Boole Press), pp. 494,
1985.
[20] M. Mukherjee and J. P. Banerjee, "DDR Pulsed IMPATT Sources at
MM-Wave Window Frequency: High-Power Operation Mode",
International Journal of Advanced Science and Technology, vol. 19, pp.
1-11, 2010.
[21] M. Sridharan and S. K. Roy, "Computer studies on the widening of the
avalanche zone and decrease on efficiency in silicon X-band sym.
DDR", Electron Lett., vol. 14, pp. 635-637, 1978.
[22] M. Sridharan and S. K. Roy, "Effect of mobile space charge on the
small signal admittance of silicon DDR", Solid State Electron, vol. 23,
pp. 1001-1003, 1980.
[23] M. E. Elta, "The effect of mixed tunneling and avalanche breakdown on
microwave transit-time diodes", Ph.D. dissertation, Electron Physics
Lab., Univ. of Mich., Ann Arbor, MI, Tech. Rep, 1978.
[24] E. O. Kane, "Theory of tunneling", J. Appl. Phys., vol. 32, pp. 83-91,
1961.
[25] Canali, C., Ottaviani, G., and Quaranta, A. A., "Drift velocity of
electrons and holes and associated anisotropic effects in silicon", J.
Phys. Chem. Solids, vol. 32, pp. 1707-1720, 1971.
[26] D. L. Scharfetter and H. K. Gummel, "Large-Signal Analysis of a
Silicon Read Diode Oscillator", IEEE Trans. on Electron Devices, vol.
16, pp. 64-77, 1969.
[27] ÔÇÿElectronic Archive: New Semiconductor Materials, Characteristics and
Properties-, http://www.ioffe.ru/SVA/NSM/Semicond.
[28] H. A. Haus and R. B. Adler, "Circuit Theory of Linear Noisy
Networks", New York: Willy, 1959.
[29] J. F. Luy, A. Casel, W. Behr and E. Kasper, "A 90-GHz double-drift
IMPATT diode made with Si MBE", IEEE Trans. Electron Devices,
vol. 34, pp. 1084-1089, 1987.