Motor Imagery Based Brain-Computer Interface for Cerebellar Impaired Patients

Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a “backdoor” to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.

Authors:



References:
[1] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller,
“How many people are able to operate an EEG-based brain-computer
interface (BCI)?”, IEEE Trans Neural Systems and Rehabilitation
Engineering, vol. 11, no. 2 pp. 145-147, June 2003.
[2] D. J. McFarland, L. M. McCane, S. V. David, J. R. Wolpaw, “Spatial
filter selection for EEG-based communication”, Electroencephalography
Clinical Neurophysiology, vol. 103, pp. 386-394, 1997.
[3] F. R. Brown, “Degenerative cerebellar ataxias", Neurology, vol. 9,
pp.799-805, 1959.
[4] L. A. Liversedge, V. Emery, “Electroencephalographic changes in
cerebellar degenerative lesions", Journal of Neurology and Neurosurgery
Psychiatry, vol. 24, no. 4, pp. 326-330, 1961.
[5] L. Schols, C. Linnemann, C. Globas, “Electrophysiology in
spinocerebellar ataxias: Spread of disease and characteristic findings",
The cerebellum, pp. 198-203, 2008.
[6] M. Arai, H. Tanaka, R. D. Pascual-Marqui, K. Hirata, “Reduced brain
electric activities of frontal lobe in cortical cerebellar atrophy", Clinical
Neurophysiology, vol. 114, no. 4, pp.740-747, 2003.
[7] N. L. Zasorin, R. W. Baloh, L. B. Myers, “Acetazolamide-responsive
episodic ataxia syndrome", Neurology, vol. 33, pp. 1212-1214, 1983.
[8] J. S. Kwon, B. F. O'Donnell, G. V. Wallenstein, R. W. Greene, Y.
Hirayasu, P. G. Nestor, M. E. Hasselmo, G. F. Potts, M. E. Shenton, R. W.
McCarley, “Gamma frequency-range abnormalities to auditory
stimulation in schizophrenia", Archives of General Psychiatry, vol. 56,
no. 11, pp. 1001-1005, Nov. 1999.
[9] B. A. Clementz, M. A. Geyer, D. L., Braff, “P50 Suppression among
schizophrenia and normal comparison subjects: A methodological
analysis", Biological Psychiatry, vol. 41, no. 10, pp. 1035-1044, May
1997.
[10] F. Battaglia, A. Quartarone, M. F. Ghilardia, R. Dattola,S. Bagnato, V.
Rizzo, L. Morgante, P. Girlanda, “Unilateral cerebellar stroke disrupts
movement preparation and motor imagery", Clinical Neurophysiology,
vol. 117, no. 5, pp. 1009-1016, 2006. [11] B. González, M. Rodriquez, C. Ramirez, M. Sabaté, “Disturbance of
Motor Imagery After Cerebellar Stroke". Behavioral Neuroscience, vol.
119, no. 2, pp. 622-626 Apr. 2005.
[12] S. H. Ying, S. I. Choi, S. L. Perlman, R. W. Baloh, D. S. Zee, A. W. Toga,
“Pontine and cerebellar atrophy correlate with clinical disability in
SCA2", Neurology, vol. 66, no. 3, pp. 424-42, Feb. 2006.
[13] A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, N. V. Thakor, “A
brain-computer interface with vibrotactile biofeedback for haptic
information." Journal of NeuroEngineering and Rehabilitation, vol. 4, no.
1, pp. 40, Oct. 2007.
[14] R. Bos, S. deWaele, P. Broersen, “Autoregressive spectral estimation by
application of the Burg algorithm to irregularly sampled data", IEEE
Transactions on Instrumentation and Measurement. vol. 51, no. 6, pp.
1289-1294, Dec. 2002.