Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite

Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.




References:
[1] H. M. Xiao, X. M. Liu, and S. Y. Fu, “Synthesis, magnetic and
microwave absorbing properties of core-shell structured MnFe2O4/TiO2
nanocomposites”, Composites Science and Technology, vol. 66, pp.
2003–2008, 2006.
[2] M. Pardavi-Horvath, “Microwave applications of soft ferrites”, Journal
of Magnetism and Magnetic Materials, vol. 215-216, pp. 171–183, 2000.
[3] P. C. Fannin, C. N. Marin, I. Malaescu, N. Stefu, P. Vlazan, S.
Novanconi, P. Sfirloaga, S. Popescu, and C. Couper, “Microwave
absorbent properties of nanosized cobalt ferrite powders prepared by
coprecipitation and subjected to different thermal treatment”, Materials
and Design, vol. 32, pp. 1600-1604, 2011.
[4] M. M. El-Okr, M. A. Salem, M. S. Salim, R. M. El-Okr, M. Ashoush, H.
M. Talaat, “Synthesis of cobalt ferrite nano-particles and their magnetic
characterization”, Journal of Magnetism and Magnetic Materials, vol.
323, pp. 920-926, 2011.
[5] J. G. Lee, J. Y. Park, and C. S. Kim, “Growth of ultra-fine cobalt ferrite
particles by a sol-gel method and their magnetic properties”, Journal of
Materials Science, vol. 33, pp. 3965-3968, 1998.
[6] D. Zhao, X. Wu, H. Guan, and E. Han, ‘Study on supercritical
hydrothermal synthesis of CoFe2O4 nanoparticles’, Journal of
Supercritical Fluids, vol. 42, pp. 226–233, 2007. [7] T. S. Karpova, V. G. Vasilyev, E. V. Vladimirova, and A. P. Nosov,
“Effect of synthesis on the magnetostrictive properties of CoFe2O4 spinel
ferrite”, Bulletin of the Russian Academy of Sciences: Physics, vol. 75,
pp. 1036–1038, 2011.
[8] E. V. Gopalan, P. A. Joy, I. A. Al-Omari, D. Sakthi Kumar, Y. Yoshida,
and M. R. Anantharaman, “On the structural, magnetic and electrical
properties of sol-gel derived nanosized cobalt ferrite”, Journal of Alloys
and Compounds, vol. 485, pp. 711-717, 2009.
[9] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J.
Schoonman, “Electrostatic sol-spray deposition of nanostructured
ceramic thin films”, Journal of Aerosol Science, vol. 30, pp. 959-967,
1999.
[10] D. R. Chen, D. Y. H. Pui, and S. L. Kaufman, “Electrospraying of
conducting liquids for monodisperse aerosol generation in the 4 nm to
1.8 μm diameter range”, Journal of Aerosol Science, vol. 26, pp. 963-
977, 1995.
[11] B. G. Tosksha, S. E. Shirsath, S. M. Patange, and K. M. Jadhav,
“Structural investigations and magnetic properties of cobalt ferrite
nanoparticles prepared by sol-gel auto combustion method”, Solid State
Communications, vol. 147, pp. 479-483, 2008.
[12] B. Vishwanathan, and V. R. K. Moorthy, Ferrite Materials: Science and
Thechnology, Springer Verlag, New Delhi, 1990
[13] N. Sivakumar, A. Narayanasamy, K. Shinoda, C. N. Chinnasamy, B.
Jeyadevan, and J. M. Greneche, “Electrical a magnetic properties of
chemically derived nanocrystalline cobalt ferrite”, Journal of applied
Physics, vol. 102, pp. 013916-013918, 2007.
[14] N. Gandhi, K. Singh, A. Ohlan, D. P. Singh, and S. K. Dhawan,
“Thermal, dielectric and microwave absorption properties of
polyaniline-CoFe2O4 nanocomposite”, Composite Science and
Technology, vol. 71, pp. 1754-1760, 2011.
[15] D. W. Chae, and B. C. Kim, “Thermal and rheological properties of
highly concentrated PET composites with ferrite nanoparticles”,
Composite Science and Technology, vol. 67, pp. 1348-1352, 2007.
[16] P. Koskela, M. Teirikangas, A. Alastalo, J. Forsman, J. Juuti, U. Tapper,
A. Auvinen, H. Seppa, H. Jantunen, and J. Jokiniemi, “Synthesis of
cobalt nanoparticles to enhance magnetic permeability of metal-polymer
composites”, Advanced powder Technology, vol. 22, pp. 649-656, 2011.
[17] R. T. Ma, H. T. Zhao, G. Zhang, “Preparation, characterization and
microwave absorption properties of polyaniline/Co0.5Zn0.5Fe2O4
nanocomposite”, Material Research Bulletin, vol. 45, pp. 1064-1068,
2010.
[18] S. P. Gairola, V. Verma, L. Kumar, M. Abdullah Dar, S. Annapoorni,
and R. K. Kotnala, “Enhanced Microwave absorption properties in
polyaniline and nano-ferrite composite in X-band”, Synthetic Metals,
vol. 160, pp. 2315-2318, 2010.
[19] X. Yu, G. Lin, D. Zhang, and H. He, “An optimizing method for design
of microwave absorbing materials”, Materials and Design, vol. 27, pp.
700–705, 2006.
[20] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Vardan, and V. K. Varadan,
Microwave electronics measurement and material characterization,
John Wiley & Sons, Ltd., England, 2004.
[21] A. Pradeep, and G. Chandrasekaran, “FTIR study of Ni, Cu and Zn
substituted nano-particles of MgFe2O4”, Materials Letters, vol. 60, pp.
371-374, 2006.
[22] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading,
1978.
[23] V. Biju, N. Sugathan, V. Vrinda, and S. L. Salini, “Estimation of lattice
strain in nanocrystalline silver from X-ray diffraction line broadening”,
Journal of Materials Science, vol. 43, pp. 1175-1179, 2008.