Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries

The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~
0.04) series cathode materials were synthesized by a carbonate
co-precipitation method, followed by a high temperature calcination
process. The influence of Al substitution on the microstructure and
electrochemical performances of the prepared materials was
investigated by X-Ray diffraction (XRD), scanning electron
microscopy (SEM), and galvanostatic charge/discharge test. The
results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered
hexagonal α-NaFeO2 structure. Although the discharge capacity of
Al-doped samples decreases as x increases,
LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at
high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a
promising material for “green” vehicles.




References:
[1] Y.K. Sun, D.H. Kim, C.S. Yoon, S.T. Myung, J. Prakash, K. Amine, A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries, Adv. Funct. Mater., 20 (2010) 485-491.
[2] W. Luo, X. Li, J.R. Dahn, Synthesis, Characterization, and Thermal Stability of Li(Ni1/3Mn1/3Co1/3−z(MnMg)z/2)O2, Chem. Mater., 22 (2010) 5065-5073.
[3] J.N. Reimers, J.R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2, J. Electrochem. Soc., 139 (1992) 2091-2097.
[4] M. Me´ne´trier, I. Saadoune, S.n.p. Levasseur, C. Delmas, The insulator–metal transition upon lithium deintercalation from LiCoO2: electronic properties and Li NMRstudy, J. Mater. Chem., 9 (1999) 1135-1140.
[5] T. Ohzuku, Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries, Chem. Lett., (2001) 642-643.
[6] Y.-S. Hea, Z.-F. Maa, X.-Z. Liaoa, Y. Jiang, Synthesis and characterization of submicron-sized LiCo1/3Ni1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method, Journal of Power Sources 163 (2007) 1053-1058.
[7] T. Mei, Y. Zhu, K. Tang, Y. Qian, Synchronously synthesized core–shell LiCo1/3Ni1/3Mn1/3O2/carbon nanocomposites as cathode materials for high performance lithium ion batteries, RSC Advances, 2 (2012) 12886.
[8] K. Yin, W. Fang, B. Zhong, X. Guo, Y. Tang, X. Nie, The effects of precipitant agent on structure and performance of LiCo1/3Ni1/3Mn1/3O2 cathode material via a carbonate co-precipitation method, Electrochim. Acta, 85 (2012) 99-103.
[9] S.-C. Yin, Y.-H. Rho, I. Swainson, L. F. Nazar*, X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x= 0 to 1), Chem. Mater., 18 (2006) 1901-1910.
[10] S.H. Ju, Y.C. Kang, The characteristics of Ni–Co–Mn–O precursor and Li(Ni1/3Co1/3Mn1/3)O2 cathode powders prepared by spray pyrolysis, Ceramics International, 35 (2009) 1205-1210.
[11] K.M. Shaju, P.G. Bruce, Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries, Adv. Mater., 18 (2006) 2330-2334.
[12] X. Bie, F. Du, Y. Wang, K. Zhu, H. Ehrenberg, K. Nikolowski, C. Wang, G. Chen, Y. Wei, Relationships between the crystal/interfacial properties and electrochemical performance of LiNi0.33Co0.33Mn0.33O2 in the voltage window of 2.5–4.6V, Electrochim. Acta, 97 (2013) 357-363.
[13] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 73 (2012) 51-65.
[14] S.-T. Myung, S. Komaba, K. Hosoya, N. Hirosaki, Y. Miura, N. Kumagai, Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties, Chem. Mater. , 17 (2005) 2427-2435.
[15] W. Luo, F. Zhou, X. Zhao, Z. Lu, X. Li, J.R. Dahn, Synthesis, Characterization, and Thermal Stability of LiNi1/3Mn1/3Co1/3−zMgzO2, LiNi1/3−zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3−zCo1/3MgzO2†, Chem. Mater., 22 (2010) 1164-1172.
[16] P. Yue, Z. Wang, H. Guo, X. Xiong, X. Li, A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials, Electrochim. Acta, 92 (2013) 1-8.
[17] S.H. Park, S.S. Shin, Y.K. Sun, The effects of Na doping on performance of layered Li1.1−xNax(Ni0.2Co0.3Mn0.4)O2 materials for lithium secondary batteries, Materials Chemistry and Physics, 95 (2006) 218-221.
[18] A. Milewska, M. Molenda, J. Molenda, Structural, transport and electrochemical properties of LiNi1−yCoyMn0.1O2 and Al, Mg and Cu-substituted LiNi0.65Co0.25Mn0.1O2 oxides, Solid State Ionics, 192 (2011) 313-320.
[19] L. Liao, X. Wang, X. Luo, X. Wang, S. Gamboa, P.J. Sebastian, Synthesis and electrochemical properties of layered Li(Ni0.333Co0.333Mn0.293Al0.04)O2−zFz cathode materials prepared by the sol–gel method, J. Power Sources, 160 (2006) 657-661.
[20] Q. Liu, K. Du, H. Guo, Z.-d. Peng, Y.-b. Cao, G.-r. Hu, Structural and electrochemical properties of Co–Mn–Mg multi-doped nickel based cathode materials LiNi0.9Co0.1−x(Mn1/2Mg1/2)xO2 for secondary lithium ion batteries, Electrochim. Acta, 90 (2013) 350-357.
[21] Y. Huang, J. Chen, J. Ni, H. Zhou, X. Zhang, A modified ZrO2-coating process to improve electrochemical performance of LiNi1/3Co1/3Mn1/3O2, Journal of Power Sources, 188 (2009) 538-545.
[22] J. Lu, Q. Peng, W. Wang, C. Nan, L. Li, Y. Li, Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries, Journal of the American Chemical Society, 135 (2013) 1649-1652.
[23] C.-H. Lu, Y.-K. Lin, Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders, Journal of Power Sources, 189 (2009) 40-44.
[24] N.N. Sinha, N. Munichandraiah, Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 in a single step by an inverse microemulsion route, ACS applied materials & interfaces, 1 (2009) 1241-1249. [25] S.K. Jeong, K.S. Nahm, A.M. Stephan, Synthesis of Li(Co0.8Ni0.2−yAly)O2 (y≤0.02) by combustion method as a possible cathode material for lithium batteries, Materials Science and Engineering: A, 445-446 (2007) 657-662.
[26] F. Zhou, X. Zhao, C. Goodbrake, J. Jiang, J.R. Dahn, Solid-State Synthesis as a Method for the Substitution of Al for Co in LiNi1/3Mn1/3Co1/3−zAlzO2, Journal of The Electrochemical Society, 156 (2009) A796.
[27] F. Zhou, X. Zhao, Z. Lu, J. Jiang, J.R. Dahn, The effect of Al substitution on the reactivity of delithiated LiNi1/3Mn1/3Co1/3−zAlzO2 with non-aqueous electrolyte, Electrochemistry Communications, 10 (2008) 1168-1171.
[28] F. Zhou, X. Zhao, J.R. Dahn, Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi1/3Mn1/3Co1/3−zAlzO2 Positive Electrode Materials, Journal of The Electrochemical Society, 156 (2009) A343.
[29] H. Ren, X. Li, Z. Peng, Electrochemical properties of Li(Ni1/3Mn1/3Al1/3−xCox)O2 as a cathode material for lithium ion battery, Electrochimica Acta, 56 (2011) 7088-7091.
[30] F. Zhou, X. Zhao, Z. Lu, J. Jiang, J.R. Dahn, The Effect of Al Substitution on the Reactivity of Delithiated LiNi0.5−zMn0.5−zA12zO2 with Nonaqueous Electrolyte, Electrochemical and Solid-State Letters, 11 (2008) A155.
[31] L. Croguennec, J. Bains, J. Bréger, C. Tessier, P. Biensan, S. Levasseur, C. Delmas, Effect of Aluminum Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li1+x(Ni0.40Mn0.40Co0.20−zAlz)1−xO2, Journal of The Electrochemical Society, 158 (2011) A664.
[32] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning, Journal of Alloys and Compounds, 487 (2009) 507-510.
[33] T. Ohzuku, Atsushi Ueda, M. Nagayama, Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells, J. Electrochem. Soc., 140 (1993) 1862-1869.
[34] T.E. Conry, A. Mehta, J. Cabana, M.M. Doeff, Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi0.45Mn0.45Co0.1–yAlyO2 Positive Electrode Materials for Li-ion Batteries, Chem. Mater., 24 (2012) 3307-3317.