Metal(loids) Speciation Using HPLC-ICP-MS Technique in Klodnica River, Upper Silesia, Poland

The work allowed gaining knowledge about redox and
speciation changes of As, Cr and Sb ionic forms in Klodnica River
water. This kind of studies never has been conducted in this region of
Poland. In study optimized and validated previously HPLC-ICP-MS
methods for determination of As, Sb and Cr was used. Separation
step was done using high-performance liquid chromatograph
equipped with ion-exchange column followed by ICP-MS
spectrometer detector. Preliminary studies included determination of
the total concentration of As, Sb and Cr, pH, Eh, temperature and
conductivity of the water samples. The study was conducted monthly
from March to August 2014, at six points on the Klodnica River. The
results indicate that exceeded at acceptable concentration of total Cr
and Sb was observed in Klodnica River and we should qualify
Klodnica River waters below the second purity class. In Klodnica
River waters dominates oxidized antimony and arsenic forms, as well
as the two forms of chromium Cr(VI) and Cr(III). Studies have also
shown the methyl derivative of arsenic's presence.





References:
[1] M. Jabłońska-Czapla. S. Szopa. K. Grygoyć. A. Łyko. R. Michalski.
„Development and validation of HPLC-ICP-MS method for the
determination inorganic Cr. As and Sb speciation forms and its
application for Pławniowice reservoir (Poland) water and bottom
sediments variability study”. Talanta. 120. (2014). 475-483.
[2] R. Michalski. M. Jabłońska-Czapla. A. Łyko. S. Szopa.“Hyphenated
methods for speciation analysis”. Encyclopedia of Analytical Chemistry.
John Wiley & Sons. Ltd. 2013.
[3] R. Michalski. M. Jabłońska. S. Szopa S. (2013) “Role and Importance of
Hyphenated Techniques in Speciation Analysis”(in) Speciation Studies
in Soil. Sediment and Environmental Samples. Eds. SezginBakirdere.
Science Publishers/CRC Press/Taylor&Francis Group.
[4] R. Michalski. M. Jabłońska. S. Szopa. A. Łyko. “Application of Ion
Chromatography with ICP-MS or MS Detection to the Determination of
Selected Halides and Metal/Metalloids Species”. Critical Reviews in
Analytical Chemistry. 41: 2. (2011). 133-150.
[5] P. Smichowski. “Antimony in the environment as a global pollutant: A
review on analytical methodologies for its determination in
atmospheric”. Talanta. 75. pp. 2-14. 2008.
[6] M. Filella. N. Belzile. Y. W. Chen. “Antimony in the environment: a
review focused on natural waters: I. Occurrence”. Earth-Science
Reviews. 57. pp. 125-176. 2002.
[7] S. Marcellino. H. Attar.D. Lievremont. M.C. Lett. F. Barbier. F.
Lagarde. “Heat-treated Saccharomyces cerevisiae for antimony
speciation and antimony(III) preconcentration in water samples”.
AnalyticaChimicaActa. 629. pp. 73-83. 2008.
[8] P. Niedzielski. M. Siepak. J. Siepak. „Występowanie i zawartości
arsenu. antymonu i selenu w wodach i innych elementach
środowiska”.RocznikOchronyŚrodowiska. 1. pp. 317-341. 2000.
[9] S. Marcellino. H. Attar.D. Lievremont. M.C. Lett. F. Barbier. F.
Lagarde. “Heat-treated Saccharomyces cerevisiae for antimony
speciation and antimony(III) preconcentration in water samples”.
AnalyticaChimicaActa. 629. pp. 73-83. 2008.
[10] A. Leonard. G. B. Gerber. “Mutagenicity, carcinogenicity and
teratogenicity of antimony compounds”. Mutation Research: Reviews in
Genetic Toxicology. 366. pp. 1-8. 1996.
[11] S. Garboś. E. Bulska. A. Hulanicki. Z. Fijalek. K. Sołtyk.
“Determination of total antimony and antimony(V) by inductively
coupled plasma mass spectrometry after selective separation of
antimony(III) by solvent extraction with N-benzoyl-Nphenylhydroxylamine”.
SpectrochimicaActa B. 55.pp. 795-802. 2000.
[12] C. H. Selene. J. Chou. C. T. De Rosa. “Case studies – Arsenic”.
International Journal of Hygiene and Environmental Health.206 . pp.
381-386. 2003.
[13] R. Cornelis. H. Crews. J. Caruso. K.G. Heumann. Handbook of
Elemental Speciation II: Species in the Environment. Food. Medicine &
Occupational Health. John Wiley & Sons. Ltd. New York. 2005.
[14] W. Semczuk. Toksykologia. Państwowy Zakład Wydawnictw
Lekarskich. Warszawa. 1990.
[15] Nocoń W.: Zawartość metali cięŜkich w osadach dennych rzeki
Kłodnicy. Journal of Elementology. 4. (2006). 457–466.
[16] Regulation of the Minister of Environmental on 9october 2011.on the
classification status of surface water and environmental quality standards
for priority substances. No. 257. pos. 1545th.
[17] R. Mason. “Trace Metals in Aquatic Systems”. Wiley-Blackwell. 2013.
ch. 2 and 7.
[18] A. N. Kaizer. S. A.Osakwe. Physicochemical Characteristics and Heavy
Metal Levels in Water Samples from Five River Systems in Delta State.
Nigeria. Journal of Applied Sciences and Environmental Management.
14(1) pp. 83 – 87. 2010.
[19] M. M. El Bouraie. A. A. El Barbary. M. M. Yeia. E. A. Motawea.
“Heavy metal concentrations in surface river water and bed sediments at
Nile Delta in Egipt”. Suoseurai Finnish Peatlend Society. Helsinki 2010.
Suo 61 (1). pp. 1-12. [20] N. Nocoń. M. Kostecki. J. Kozłowski. “Hydrochemical characteristic of
Klodnica River”. OchronaŚrodowiska. 2006. 28. 3. pp. 39-44 (in
Polish).
[21] E. Adamiec. E. Helios-Rybicka.“Distribution of pollutants in the Odra
River system. Part IV.Heavy metal distribution in water of the upper and
middle Odra River. 1998-2000”. Polish Journal of Environmental
Studies. 2002. 11. 6. pp.669-673.
[22] M. Jablonska-Czapla. “Arsenic, antimony and chromium speciation
using HPLC-ICP-MS technique in selected rivers ecosystems of Upper
Silesia. Poland-validation of methodology”. in 17-20 June. 2014. 38th
International Symposium on Environmental Analytical Chemistry.
Lausanne. Switzerland. pp.62.