Mechanism of Alcohol Related Disruption of the Error Monitoring and Processing System

The error monitoring and processing system, EMPS is the system located in the substantia nigra of the midbrain, basal ganglia and cortex of the forebrain, and plays a leading role in error detection and correction. The main components of EMPS are the dopaminergic system and anterior cingulate cortex. Although, recent studies show that alcohol disrupts the EMPS, the ways in which alcohol affects this system are poorly understood. Based on current literature data, here we suggest a hypothesis of alcohol-related glucose-dependent system of error monitoring and processing, which holds that the disruption of the EMPS is related to the competency of glucose homeostasis regulation, which in turn may determine the dopamine level as a major component of EMPS. Alcohol may indirectly disrupt the EMPS by affecting dopamine level through disorders in blood glucose homeostasis regulation.




References:
[1] K. R. Ridderinkhof, Y. de Vlugt, A. Bramlage, M. Spaan, M. Elton et al,
"Alcohol consumption impairs detection of performance errors in
mediofrontal cortex," Science, vol. 298, pp. 2209-2211, 2002.
[2] C. B. Holroyd, N. Yeung, "Alcohol and error processing," Trends.
Neurosci., vol. 26, no. 8, pp. 402- 404, 2003.
[3] Y. Nick, M. M. Botvinick, J. D. Cohen, "The neural basis of error
detection: Conflict monitoring and the error-related negativity," Psychol.
Rev., vol. 111, no. 4, pp. 931-959, 2004.
[4] S. Nieuwenhuis, C. B. Holroyd, N. Mol, M. G. H. Coles,
"Reinforcement related brain potential from medial frontal cortex:
origins and functional significance," Neurosci. Behav. Rev., vol. 28, no.
4, pp. 441-448, 2004.
[5] T. F. M├╝nte, M. Heldmann, H. Hinrichs, J. Marco-Pallares, U. M.
Krämer et al., "Nucleus accumbens is involved in human action
monitoring: evidence from invasive electrophysiological recordings,"
Hum. Neurosci., vol. 1, no. 11, pp. 1-6, 2008.
[6] K. R. Ridderinkhof, S. Nieuwenhuis, T. R. Bashore, "Errors are
foreshadowed in brain potentials associated with action monitoring in
cingulate cortex," Neurosci. Lett., vol. 348, pp. 1-4, 2003.
[7] P. R. Montague, P. Dayan, T. J. Sejnowski, "A Framework for
Mesencephalic Dopamine Systems Based on Predictive Hebbian
Learning," J. Neurosci., vol. 76, no. 5, pp. 1936-1947, 1996.
[8] M. O. Welcome, E. V. Pereverzeva, V. A. Pereverzev, "Comparative
analyses of the extent of glucose homeostasis control and mental
activities of alcohol users and non-alcohol users," Pð¥rt Harcourt Med.
J., vol. 4, no. 2, pp. 109-121, 2010.
[9] C. B. Holroyd, P. Praamstra, E. Plat, M. G.H. Coles, "Spared errorrelated
potentials in mild to moderate Parkinson-s disease,"
Neuropsychologia, vol. 1419, pp. 1-9, 2002.
[10] O. Montefusco, M. C. Assini, C. Missale, "Insulin-mediated effects of
glucose on dopamine metabolism," Acta. Diabet. Lat., vol. 21, pp. 71-
77, 1984.
[11] R. Willemssen, T. M├╝ller, M. Schwarz, M. Falkenstein, C. Beste,
"Response Monitoring in De Novo Patients with Parkinson-s Disease,"
PLoS One, vol. 4, no. 3, e4898, 2009,
doi:10.1371/journal.pone.0004898.
[12] N. T. Bello, A. Hajnal, "Alterations in blood glucose levels under
hyperinsulinemia affect accumbens dopamine," Physiol. Behav., vol. 88,
no. 1-2, pp. 138-145, 2006.
[13] L. T. Haltia, J. O. Rinne, H. Merisaari, R. P. Maguire, E. Savontaus et
al., "Effects of intravenous glucose on dopaminergic function in the
human brain in vivo," Synapse, vol. 61, no. 9, pp. 748 - 756, 2007.
[14] J. S. Lee, Z. Pfund, C. Juhász, M. E. Behen, O. Muzik et al., "Altered
regional brain glucose metabolism in duchenne muscular dystrophy: a
PET study," Muscle Nerve., vol. 26, no. 4, pp. 506-512, 2002.
[15] J. M. Williams, W. A. Owens, G. H. Turner, C. Saunders, C. Dipace et
al., "Hypoinsulinemia regulates amphetamine-induced reverse transport
of dopamine," PLoS Biol., vol. 5, no. 10, e274, 2007,
doi:10.1371/journal.pbio.0050274.
[16] C. Beste, R. Willemsen, C. Saft, M. Falkenstein, "Error processing in
normal aging and in basal ganglia disorders," Neuroscience, vol. 159,
pp. 143-149, 2009.
[17] J. C. Umhau, S. G. Petrulis, R. Diaz, R. Rawlings, D. T. George, "Blood
Glucose Is Correlated with Cerebrospinal Fluid Neurotransmitter
Metabolites," Neuroendocrinology, vol. 78, pp. 339-343, 2003.
[18] N. D. Volkow, G-J. Wang, D. Franceschi, J. S. Fowler, P. K. Thanos et
al., "Low doses of alcohol substantially decrease glucose metabolism in
the human brain," NeuroImage, vol. 29, pp. 295 - 301, 2006.
[19] H. A. Krebs, R. A. Freedland, R. Hems, M. Stubbs, "Inhibition of
hepatic gluconeogenesis by ethanol," Biochem. J., vol. 112, pp. 117-124,
1969.
[20] G. Hajcak, S. Nieuwenhuis, K. R Ridderinkhof, R. F. Simons, "Errorpreceding
brain activity: Robustness, temporal dynamics, and boundary
conditions," Biol. Psychol., vol. 70, pp. 67-78, 2005.
[21] S. Nieuwenhuis, Y. Nick, W. Wery van den, K. R. Ridderinkhof,
"Electrophysiological correlates of anterior cingulate function in a
Go/NoGo task: Effects of response conflict and trial-type frequency,"
Cogn. Affect. Behav. Neurosci., vol. 3, pp. 17-26, 2003.
[22] Y. Tu, S. Kroener, K. Abernathy, C. Lapish, J. Seamans et al., "Ethanol
Inhibits Persistent Activity in Prefrontal Cortical Neurons," J. Neurosci.,
vol. 27, no. 17, pp. 4765-4775, 2007.
[23] R. Hester, N. Barre, K. Murphy, T. J. Silk, J. B. Mattingley, "Human
Medial Frontal Cortex Activity Predicts Learning from Errors," Cereb.
Cort., vol. 18, pp. 1933-1940, 2008.
[24] D. Burdakov, S. M. Luckman, A. Verkhratsky, "Glucose-sensing
neurons of the hypothalamus," Phil. Trans. R. Soc. B., vol. 360, pp.
2227-2235, 2005.
[25] R. Z. Goldstein, D. Tomasi, S. Rajaram, L. A. Cottone, L. Zhang et al.,
"Role of anterior cingulate and medial orbitofrontal cortex in processing
drug cues in cocaine addiction," Neuroscience, vol. 144, pp. 1153-1159,
2007.
[26] I. Hindmarch, J. S. Kerr, N. Sherwood, "The effects of alcohol and other
drugs on psychomotor performance and cognitive function," Alcohol.
Alcohol., vol. 26, pp. 71-79, 1991.
[27] B. E. de Galan, B. J. Schouwenberg, C. J. Tack, P. Smits,
"Pathophysiology and management of recurrent hypoglycaemia and
hypoglycaemia unawareness in diabetes," Neth. J. Med., vol. 64, pp.
269-279, 2006.
[28] A. Peters, U. Schweiger, L. Pellerin, C. Hubold, K. M. Oltmanns et al.,
"The selfish brain: competition for energy resources," Neurosci.
Biobehav. Rev., vol. 28, pp. 143-180, 2004.
[29] C. S. Carter, T. S. Braver, D. M. Barch, M. M. Botvinick, D. Noll et al.,
"Anterior cingulate cortex, error detection, and the online monitoring of
performance," Science, vol. 280, pp. 747-749, 1998.
[30] M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, J. D. Cohen,
"Conflict monitoring and cognitive control," Psychol. Rev., vol. 108, no.
3, pp. 624-652, 2001.
[31] M. M. Botvinick, J. D. Cohen, C. S. Carter, "Conflict monitoring and
anterior cingulate cortex: an update," Trends. Cogn. Sci., vol. 8, no. 12,
pp. 539-546, 2004.
[32] C. Xavier, D. Jean-Claude, "Hormonal and Genetic Influences on
Processing Reward and Social Information", in Ann. N.Y. Acad. Sci., vol.
1118, pp. 43-73, 2007.
[33] J. B. Hirsh, M. Inzlicht, "Error-related negativity predicts academic
performance," Psychophysiology, vol. 46, pp. 1-5, 2009.
[34] M. A.S. Boksem, M. Tops, A. E. Wester, T. F. Meijman, M. M. Lorist,
"Error-related ERP components and individual differences in
punishment and reward sensitivity," Brian. Res., vol. 1101, pp. 92-101,
2006.