Mechanical Evaluation of Stainless Steel and Titanium Dynamic Hip Screws for Trochanteric Fracture

This study aimed to present the mechanical performance evaluation of the dynamic hip screw (DHS) for trochanteric fracture by means of finite element method. The analyses were performed based on stainless steel and titanium implant material definitions at various stages of bone healing and including implant removal. The assessment of the mechanical performance used two parameters, von Mises stress to evaluate the strength of bone and implant and elastic strain to evaluate fracture stability. The results show several critical aspects of dynamic hip screw for trochanteric fracture stabilization. In the initial stage of bone healing process, partial weight bearing should be applied to avoid the implant failure. In the late stage of bone healing, stainless steel implant should be removed.




References:
[1] R. Mohan, R. Karthikeyan, and S. V. Sonanis, "Dynamic hip screw:
Does side make a difference? Effects of clockwise torque on right and
left DHS," Injury, vol. 31, no. 9, pp. 697-699, 2000.
[2] M. Windolf, V. Braunstein, C. Dutoit, and K. Schwieger, "Is a helical
shaped implant a superior alternative to the Dynamic Hip Screw for
unstable femoral neck fractures? A biomechanical investigation",
Clinical Biomechanics, vol. 24, no. 1, pp. 59-64, 2009.
[3] P. Helwig, G. Faust, U. Hindenlang, A. Hirschm├╝ller, L. Konstantinidis,
C. Bahrs, N. S├╝dkamp, and R. Schneider, "Finite element analysis of
four different implants inserted in different positions to stabilize an
idealized trochanteric femoral fracture", Injury, vol. 40, no. 3, pp. 288-
295, 2009.
[4] T.C. Wong, Y. Chiu, W. L. Tsang, W. Y. Leung, and S. H. Yeung, "A
double-blind, prospective, randomised, controlled clinical trial of
minimally invasive dynamic hip screw fixation of intertrochanteric
fractures", Injury, vol. 40, no. 4, pp. 422-427, 2009.
[5] A. Moroni, C. Faldini, F. Pegreffi, A. Hoang-Kim, F. Vannini, and S.
Giannini, "Dynamic hip screw compared with external fixation for
treatment of osteoporotic pertrochanteric fractures: A prospective,
randomized study", J. Bone & Joint Surg. - Series A, vol. 87, no. 4, pp.
753-759, 2005.
[6] D. P. A. Jewell, S. Gheduzzi, M. S. Mitchell, and A. W. Miles, "Locking
plates increase the strength of dynamic hip screws", Injury, vol. 39, no.
2, pp. 209-212, 2008.
[7] J. Auyeung, and O. Thomas, "Origami in dynamic hip screw surgery",
Injury, vol. 35, no. 10, 2004, pp. 1039-1041.
[8] M. Güven, U. Yavuz, B. Kadioğlu, B. Akman, V. Kilinçoğlu, K. Unay,
and F. Altintaş , "Importance of screw position in intertrochanteric
femoral fractures treated by dynamic hip screw", Orthop & Traum: Surg
& Res., vol. 96, no. 1, pp. 20-26, 2010.
[9] S. W. McLoughlin, D. L. Wheeler, J. Rider, and B. Bolhofner,
"Biomechanical evaluation of the dynamic hip screw with two- and fourhole
side plates", J. Orthop. Trauma, vol. 14, no. 5, pp. 318-323, 2000.
[10] A. Abalo, A. Dossim, , A. F. Ouro Bangna, K. Tomta, , A. Assiobo, and,
A. Walla, "Dynamic hip screw and compression plate fixation of
ipsilateral femoral neck and shaft fractures", J. Orthop Surg. (Hong
Kong), vol. 16, no. 1, pp. 35-38, 2008.
[11] H. Pervez, , M. J. Parker, G. A. Pryor, L. Lutchman, and N. Chirodian,
"Classification of trochanteric fracture of the proximal femur: A study of
the reliability of current systems", Injury, vol. 33, no. 8, pp. 713-715,
2002.
[12] M. O. Heller, G. Bergmann, J. P. Kassi, , L. Claes, N. P. Haas, and G. N.
Duda, "Determination of muscle loading at the hip joint for use in preclinical
testing", J. Biomechanics, vol. 38, no. 5, pp. 1155-1163, 2005.
[13] K. Sitthiseripratip, H. V. Oosterwyck, , J. V. Sloten, B. Mahaisavariya,
E. L .J. Bohez, , J. Suwanprateeb, R. Van Audekercke, and P. Oris:
"Finite element study of trochanteric gamma nail for trochanteric
fracture", Med. Eng. & Physics, vol. 25, no. 2, pp. 99-106, 2003.
[14] L. E. Claes, and, C. A. Heigele, "Magnitudes of local stress and strain
along bony surfaces predict the course and type of fracture healing", J.
Biomechanics, vol. 2, no. 3, pp. 255-266, 1999.
[15] B. Mahaisavariya, K. Sitthiseripratip and J. Suwanprateeb, "Finite
element study of the proximal femur with retained trochanteric gamma
nail and after removal of nail", Injury, vol. 37, no. 8, pp. 778-785, 2006.
[16] G. Cheung, P. Zalzal, M. Bhandari, J. K. Spelt, and M. Papini, "Finite
element analysis of a femoral retrograde intramedullary nail subject to
gait loading", Med. Eng. & Physics, vol. 26, no. 2, pp. 93-108, 2004.
[17] A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J. Gregson,
"Simulation of a knee joint replacement during a gait cycle using explicit
finite element analysis", J. Biomechanics, vol. 35, no. 2, pp. 267-275,
2002.
[18] M. R. Abdul-Kadir, U. Hansen, R. Klabunde, D. Lucas, and A. Amis,
"Finite element modelling of primary hip stem stability: The effect of
interference fit", J. Biomechanics, vol. 41, no. 3, pp. 587-594, 2008.
[19] G. N. Duda, M. Heller, J. Albinger, O. Schulz, E. Schneider, and L.
Claes, "Influence of muscle forces on femoral strain distribution", J.
Biomechanics, vol. 31, no. 9, pp. 841-846, 1998.
[20] T. W. Lu, S. J. G. Taylor, J. J. O'Connor, and P. S. Walker, "Influence of
muscle activity on the forces in the femur: An in vivo study", J.
Biomechanics, vol. 30, no. 11-12, pp. 1101-1106, 1997.