InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization

The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.




References:
[1] T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu,
and S. Nakamura, "Quantum-confined Stark effect in an
AlGaN/GaN/AlGaN single quantum well structures," Jpn. J. Appl. Phys.,
vol. 38, pp. L914-L916, Aug. 1999.
[2] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous
polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B,
vol. 56, pp. R10 024-R10 027, Oct. 1997.
[3] M. Kariya, S. Nitta, S. Yamaguchi, H. Kato, T. Takeuchi, C. Wetzel, H.
Amano, and I. Akasaki, "Structural properties of Al In N ternary alloys on
GaN grown by metalorganic vapor phase epitaxy," Jpn. J. Appl. Phys.,
vol. 37, pp. L697-L699, June 1998.
[4] M. Kariya, S. Nitta, S. Yamaguchi, T. Kashima, H. Katoh, H. Amano, and
I. Akasaki, "Structural characterization of Al In N lattice-matched to
GaN," J. Cryst. Growth, vol. 209, pp. 419-423, Feb. 2000.
[5] S. Yamaguchi, M. Kariya, S. Nitta, H. Amano, and I. Akasaki,
"Anomalous features in the optical properties of AlInN on GaN grown by
metal organic vapor phase epitaxy," Appl. Phys. Lett., vol. 76, pp.
876-878, Feb. 2000.
[6] M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, H.-C. Zur Loye,
G. Tamulaitis, A. Zukauskas, D. J. Smith, D. Chandrasekhar, and R.
Bicknell Tassius, "Lattice and energy band engineering in 1161-1163,
Feb. 2000.
[7] M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, and A.
Bykhovsky, "Piezoelectric doping in AlInGaN/GaN heterostructures,"
Appl. Phys. Lett., vol. 75, pp. 2806-2808, Nov. 1999 .
[8] G. Tamulaitis, K. Kazlauskas, S. Jursenas, A. Zukauskas, M. A. Khan, J.
W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, "Optical bandgap
formation in AlInGaN alloys," Appl. Phys. Lett., vol. 77, pp. 2136-2138,
Oct. 2000 .
[9] J. P. Zhang, J.W. Yang, G. Simin, M. Shatalov, M. A. Khan, M. S. Shur,
and R. Gaska, "Enhanced luminescence in InGaN multiple quantum wells
with quaternary AlInGaN barriers," Appl. Phys. Lett., vol. 77, pp.
2668-2670, Oct. 2000 .
[10] J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M.
A. Khan, and R. Gaska and M. S. Shur, "Pulsed atomic layer epitaxy of
quaternary AlInGaN layers," Appl. Phys. Lett., vol. 79, pp. 925-927,
Aug. 2001 .
[11] J. Zhang,V. Adivarahan, H. M.Wang, Q. Fareed, E.Koukstis, A. Chitnis,
M. Shatalov, J.W. Yang, G. Simin, M. A. Khan, M. Shur, and R. Gaska,
"Quaternary AlInGaN multiple quantum wells for ultraviolet light
emitting diodes," Jpn. J. Appl. Phys., vol. 40, pp. L921-L924, Sept. 2001
[12] .M. A. Khan, V. Adivarahan, J. P. Zhang, C. Chen, E. Kuokstis, A.
Chitnis, M. Shatalov, J. W. Yang, and G. Simin, "Stripe geometry
ultraviolet light emitting diodes at 305 nanometers using quaternary
AlInGaN multiple quantum wells," Jpn. J. Appl. Phys., vol. 40, pp.
L1308-L1310, Dec. 2001.
[13] J. Carrano, A. Khan, M. Kneissl and N. Johnson, "Progress in
semiconductor UV optical sources benefits security and defense". Palo
Alto Research Center and Pacific Scientific Instruments (s pi e-s oe m a g
a z i n e) j u n e 2 003 .
[14] Integrated System Engineering (ISE TCAD) AG, Switzerland,
http://www.synopsys.com.
[15] S. M. Thahab, H. Abu Hassan and Z. Hassan, "Performance and optical
characteristic of InGaN MQWs laser diodes" Opt. Exp., 15, No.5, p.2380,
Mar. 2007.
[16] P.Perlin, C.Kisielowshi, V.Iota, B.A.Weinstein, L.Mattos, N.A.Shapriro,
J.Kruger, and E.R.Weber"InGaN/GaN quantum wells studied by high
pressure, variable temperature, and excitation power spectroscopy",
Appl.Phys.Lett., vol. 73, pp. 2778, Sep. 1998 .
[17] T.Takeuchi, S.Sota,M.Katsuragawa, M.Komori,H.Takeuchi, H.Amano,
and I.Akasaki "Quantum-Confined Stark Effect due to Piezoelectric
Fields in GaInN Strained Quantum Wells", Jpn.J.Appl.Phys., Part 2 vol.
36, pp. L382-L385, February (1997).
[18] T.Takeuchi, C.Wetzel,S.Yamaguchi,H.Sakai,H.Amano, and I.Akasaki,
Determination of piezoelectric fields in strained GaInN quantum wells
using the quantum-confined Stark effect", Appl.Phys.Lett., vol. 73, p.
1691 Sep. 1998 .
[19] M.D.Nardelli, K.Rapcewicz, and J. Bernholc, Polarization field effects on
the electron-hole recombination dynamics in In0.2Ga0.8N/In1-xGaxN
multiple quantum wells", Appl.Phys.Lett., vol. 71, p.3135, Nov. 1997.