Identification and Characterization of Heavy Metal Resistant Bacteria from the Klip River

Pollution of the Klip River has caused
microorganisms inhabiting it to develop protective survival
mechanisms. This study isolated and characterized the heavy metal
resistant bacteria in the Klip River. Water and sediment samples were
collected from six sites along the course of the river. The pH,
turbidity, salinity, temperature and dissolved oxygen were measured
in-situ. The concentrations of six heavy metals (Cd, Cu, Fe, Ni, Pb
and Zn) of the water samples were determined by atomic absorption
spectroscopy. Biochemical and antibiotic profiles of the isolates were
assessed using the API 20E® and Kirby Bauer Method. Growth
studies were carried out using spectrophotometric methods. The
isolates were identified using 16SrDNA sequencing. The uppermost
part of the Klip River with the lowest pH had the highest levels of
heavy metals. Turbidity, salinity and specific conductivity increased
measurably at Site 4 (Henley on Klip Weir). MIC tests showed that
16 isolates exhibited high iron and lead resistance. Antibiotic
susceptibility tests revealed that the isolates exhibited multitolerances
to drugs such as Tetracycline, Ampicillin, and
Amoxicillin.





References:
[1] V. Vermaak, A geomorphological Investigation of the Klip River
Wetland, South of Johannesburg. MSc. Dissertation, Johannesburg, SA:
University of Witwatersrand, 2009.
[2] T. S. McCarthy, V. Arnold, J. Venter, and, W. N. Ellery, “The collapse
of the Johannesburg Klip River Wetland,” SAJS, vol. 104, pp. 391-397,
Oct. 2007.
[3] A. Ackil and, S. Kolda, “Acid mine drainage (AMD): causes, treatment
and case studies,” J. of Clean Prod., vol 14, pp 1136–1145. Apr. 2005.
[4] D. N. Muruven, An Evaluation of the cumulative surface water pollution
within the consolidated Main Reef Area, Roodeport. SA: University of
South Africa, 2011.
[5] G. Ozer, A. Ergene, and, B. Icgen, “Biochemical and molecular
characterization of strontium resistant environment isolates of
Pseudomonas flourescens and Sphingomonas paucimobilis,”
Geomicrobiol. J., vol. 30, no. 5, pp. 381-390, Mar. 2013.
[6] T. Aktan, S. Tan, and B. Icgen, “Characterization of lead-resistant river
isolate Enterococcus faecalis and assessment of its multiple metal and
antibiotic resistance,” Environ. Monit. Assess., vol. 185, pp. 5285-5293,
Oct. 2013.
[7] S. Silver, “Plasmid determined metal resistance mechanisms, Range and
Overview,” Plasmid, vol. 27, no. 1, pp. 1-3. Jan. 1992.
[8] A. Hynninen, T. Touze, L. Pitkanen, D. Mengin-Lecreulx, and M. Virta,
“An efflux transporter PbrA and a phosphatase PbrB cooperate in a leadresistance
mechanism in bacteria,” Mol. Microbiol., vol. 74, pp. 384–
394. Oct. 2009.
[9] B. Rajkumar, G. D and, A. K. Paul, “Isolation and characterization of
heavy metal resistant bacteria from Barak River contaminated with pulp
paper mill effluent, South Assam,” B. Environ. Contam. Tox., vol. 89,
pp. 263-268, May 2012.
[10] S. Koc, B. Kabatas, and, B. Icgen, “Multidrug and Heavy Metal-
Resistant Raoultella planticola Isolated from Surface Water,” B.
Environ. Contam. Tox., vol 91, pp. 177-183 Jun. 2103.
[11] M. K. Chattopadhay, and H. P. Grossart, “Antibiotic and heavy metal
resistance of bacterial isolates obtained from some lakes in northern
Germany,” NSHM J. Phar. and Health Manag., vol. 2, pp. 74-75, Feb.
2011.
[12] C. Pires, Bacteria in heavy metals contaminated soil, diversity, tolerance
and use in remediation system. PhD Thesis, UK: Cranfield University,
2010.
[13] E. C. Raja, G. S. Selvam, and K. Ominie, “Isolation, identification and
characterization of heavy metal resistant bacteria from sewage” in
International Joint Symposium on Geodisaster Prevention and
Geoenvironment in Asia. 2009, pp. 205-211.
[14] T. Maniatis, E. Fritisch, and J. Sambrook, Molecular cloning a
laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor,
Laboratory. 1982.
[15] M. J. Pelczer, and R. D. Reid, “Pure cultures and growth
characteristics,” in: Microbiology, New York: McGraw Hill Book
Company, 1958, pp 76-84.
[16] J. P. Duguid, “Staining methods,” in Mackie & McCartney Practical
Medical Microbiology, J. G. Collee, A. G. Frazer, B. P. Marmion, and
A. Simmons, Eds. Edinburgh, New York: Churchill Livingstone, 1996,
pp. 41-51.
[17] A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic
Susceptibility Testing by a standardized single disc method” AJCP, vol.
36, pp. 493-496, Apr. 1966.
[18] K. Phillips, F. Zaidan, O. R. Elizond, and K. L. Lowe, “Phenotypic
characterization and 16SrDNA identification of culturable non-obligate
halophilic bacterial communities from a hypersaline lake, La Sal del
Rey, in extreme South Texas (USA)” Aquatic Biosystems, vol. 8, no. 5,
pp. 1-11, 2012.
[19] S. Giri, Isolation and biochemical characterization of Mercury Resistant
Bacteria (MRB) from soil samples of industrially contaminated areas of
Rourkela, Orissa. MSc. Dissertation, Rourkela, Orissa: National
Institute of Technology, 2011.
[20] J. Zhou, M. Bruns, and J. M. Tiedje, “DNA recovery from Soils of
Diverse Composition,” Appl. Environ. Microbiol., vol. 62, no. 2, pp.
316-322, Feb. 1996.
[21] S. F. Altschul, T. L. Maddan, A. A.Schaffer, J. Jang, Z. Zang, W. Miller,
and D. J. Lipman, “Gapped BLAST and PSI-BLAST a generation of
protein database search programs,” Nucl. Acids Res., vol. 25, pp. 3389-
3402, Jul. 1997.
[22] K. Katoh, and D. S Standley, “MAFFT Multiple Sequence Alignment
Software Version 7: Improvements in Performance and Usability,” Mol.
Biol. Evol., vol. 30, no. 4, pp. 772-780, Jan. 2013.
[23] In-Stream Water Quality Guidelines for the Klip River Catchment. 2003.
(www.reservoir.co.za). Accessed 4 October 2013
[24] M. L. De La Torre, D. Sanchez Rhodas, J. A. Grande, and T. Gomez,
“Relationships between pH, colour and heavy metal concentrations in
the Tinto and Odiel Rivers (Southwest Spain),”. Hydrol. Res., vol. 41,
no. 5, pp. 406-413, 2010.
[25] C. Davidson, Catchment Diagnostic Framework for the Klip River
Catchment, Vaal Barrage. MSc Dissertation, SA: University of
Witwatersrand. 2003.
[26] Minnesota Pollution Control, Low Dissolved Oxygen in water. Water
Quality/Impaired Waters 3.24. Minesota: 2009.
[27] T. S. McCarthy, “The impacts of Acid Mine Drainage in South Africa,”
SAJS, vol. 107, no. 5/6, pp. 1-7, June 2011.
[28] J. Willey, L. Sherwood, and C. Woolverton, “Microbial Growth,” in
Presscotts's Microbiology, 1st ed, J. Willey, L. Sherwood, and C.
Woolverton, Eds. New York: McGraw-Hill Custom Publishing, 2004,
pp. 126-151.
[29] D. H. Nies, and S. Silver, “Ion efflux systems involved in bacterial metal
resistance,” J. Ind. Microbiol., vol. 14, pp. 186-199. Nov.1994.
[30] T. M. Roane, “Lead Resistance in Two Bacterial Isolates from heavy
metal contaminated soils,” Microbial Ecol., vol 37, pp. 218-224. Dec
1998.
[31] P. V. Bramachari, P. B. Kavi Kishor, R. Ramadevi, R. Kumar, B. Rao,
and S. K. Dubey, “Isolation and characterization of mucous
exoplysaccharide produced by Vibrio furnissii VB0s3” J. Microbiol.
and Biotechn., vol. 17, pp. 44-51. Jan. 2007.
[32] J. S. Chang, R. Law, and C. C. Chang, “Biosorption of lead, copper and
cadmium by biomass of Pseudomonas aeruginosa PU21,” Water Res.,
vol. 31, pp. 1651–1658. July 1997.
[33] S. M. Hossain, and N. Anantharaman, “Studies on bacterial growth and
lead biosorption using Bacillus subtilis,” IJCT, vol. 13, pp. 591–596,
Nov. 2006.
[34] M. M. Naik, and S. K. Dubey, “Lead resistant bacteria: Lead resistance
mechanisms, their applications in lead bioremediation and
biomonitoring,” Ecotoxicol. Environ. Saf., vol. 98, pp. 1-7. 2013.
[35] J. T. Scahntz, and N. Kee-Woel, “A manual for primary cell culture,”
World Scientific, pp. 89, Dec. 2004.
[36] R. N. Brogden, R. C. Heel, T. M. Seight, and G. S. Avery, “Amoxicillin
injectable: a review of its antibacterial spectrum, pharmacokinetics and
therapeutic use,” Drugs, vol. 18, no. 3, pp. 169-184, Sep. 1979.
[37] S. K. Sharma, L. Singh, and S. Singh “Comparative Study between
Penicillin and Ampicillin,” SJAMS, vol. 1, no. 4, pp. 291-294, 2013.
[38] B. Zakeri, and G, D. Wright, “Chemical biology of Tetracycline
antibiotics,” Biochem. Cell Biol., vol. 86, no. 2, pp. 124-136, Apr. 2008.
[39] I. Stock, “Natural Antibiotic Susceptibility of Proteus spp. with special
reference to P. mirabilis and P. penneri strains,” J. Chemother., vol. 15,
no. 1, pp. 12-26. Feb. 2003.
[40] M. P. Reyes, J. J. Zhao, and J. A. L. Buensalido, “Current Perspectives:
Therapeutic Uses of Tobramycin,” J. Pharmacovigilance, vol. 2, no. 2,
pp. 1-5, Feb. 2014
[41] E. J. Kuijper, M. F. Peeters, B. S. Schoenmakers, and H. C. Zanen,
“Antimicrobial susceptibility of sixty human fecal isolates of Aeromonas
species,”. Eur. J. Clin. Microbiol. Infect. Dis., vol. 8, pp. 248-250,
Mar.1989.
[42] M. P. Wilhem, and L. Estes, “Vancomycin,” Mayo Clinic Proceedings,
vol. 74, no. 9, pp. 928-935, Sep 1999.
[43] A. O. Odeyemi, A. Asmat, and G. Usup, “Antibiotic resistance and
putative vitulence factors of Aeromonas hydrophila isolated from
estuary,” JMBFS, vol. 1, no. 6, pp. 1339-1357, Jun. 2012.
[44] R. N. N. Abskharon, S. H. A. Hassan, S. M. F. Gad-el-rab, and A. A. M.
Shoreit, “Heavy Metal Resistant of E. coli Isolated from wastewater
sites in Assiut City, Egypt,”. Bull. Environ. Contamin. Tox., vol. 81, pp.
309-315. 2008
[45] P. Bohwmik, P. K. Bag, T. K. Hajra, P. S. Ritupama, and T.
Ramamurthy, “Pathogenic potential of Aeromonas hydrophila isolated
from surface waters in Kolkata, India,” J. Med. Microbiol., vol. 58, pp.
1549-1558, Dec. 2009.
[46] A. Alperi, A. J. Martiinez-Murcia, K. O Wechien, M. Arturo, J. S.
Maria, and J. F. Maria, “Aeromonas fluvialis sp. nov., isolated from a
Spanish river,” IJSEM, vol. 60, pp. 2048-2055, Jan. 2010.
[47] S. Virender, P. K. Chauchan, R. Kanta, T. Phewa, and V. Kumar,
“Isolation and characterization of Pseudomonas resistant to heavy metal
contaminants,” IJPSRR, vol. 3, no. 2, pp. 164-167, Aug. 2010.
[48] K. K. Sharma, and U. Kalawat, “Emerging infections: Shewanella, A
series of Five Cases,” J. Lab. Physicians, vol. 2, no. 2, pp. 61-65, July
2010.
[49] A. C. M. Toes, J. S. Geelhoed, J. G. Kuenen, and, G. Muyzer,
“Characterization of Heavy Metal Resistance of Metal-Reducing
Shewanella Isolates from Marine Sediments,” Geomicrobiol. J., vol. 25,
no. 6, Aug. 2008.
[50] S. T. Odonkor, and J. K. Ampofo “E. coli as an inidcator of
bacteriological quality of water: an overview,” Microbiol. Res., vol. 4,
no. e2, pp. 5-11, Nov. 2012.
[51] P. Setlow, “I will survive: DNA protection in bacterial spores,” Trends
Microbiol, vol. 15, pp. 172–180. Apr. 2007.
[52] S. Panadey, P. Saha, S. Biswas, and T. Maiti, “Characterization of two
metal resistant Bacillus strains isolated from slag disposal site at
Burnpur, India,” J. Environ. Biol., vol. 32, pp. 773-779, Nov. 2011.
[53] S. Lüders, F. David, M. Steinwand, E. Jordan, M. Hust, S. Dubel, and
E.Franco-Lara, “Influence of the hydromechanical stress and
temperature on growth and antibody fragment production with Bacillus
megaterium,” Appl. Microbial. Biotechn., vol. 91, pp. 81-90, July 2011.
[54] M. Hookom, and D. Puchooa, “Isolation and identification of Heavy
Metals Tolerant Bacteria from Industrial and Agricultural Areas in
Mauritius,” CRMB, vol. 1, no. 3, pp. 119-123. May 2013.
[55] T. D. Pena-Montenegro, and J. Dussan, “Genome sequence and
description of the heavy metal tolerant bacterium Lysinibacillus
sphaericus strain OT4b,”.31. Stand.Genomic, vol. 9, no. 1, pp. 42-56,
Oct. 2013
[56] R. Margesin, and F. Schiner, “Bacterial heavy metal-tolerance- extreme
resistance to nickel in Arthrobacter spp. strains,” JBM, vol. 36, no. 4, pp.
269-282, Jan. 2007