Fatty Acids Derivatives and Steroidal Saponins: Abundance in the Resistant Date Palm to Fusarium oxysporum f. sp. albedinis, Causal Agent of Bayoud Disease

Takerbucht is the only cultivar of date palm known as being resistant to the bayoud disease, caused by Fusarium oxysporum f. sp. albedinis (F.o.a.). In the aim to understand more about the defense mechanisms implied, we realized phytochemical analyses of this cultivar leaflets and roots and this, for the first time, using gas chromatography-mass spectrometry (GC-MS).The examination of our results shows that fifty-four molecules have been detected, fourteen of which are common to leaflets and roots. This study revealed also the organs' richness in derivatives fatty acids: both saturated and unsaturated are represented mainly by methyl esters of Hexadecanoic and 9,12,15-Octadecatrienoic acids. 1-Dodecanethiol, derivative Dodecanoic acid is only present in roots. It’s of great interest to note that the screening revealed the steroidal saponins abundance, among which Yamogenin acetate and Diosgenin, exclusively detected in Takerbucht. They may play an essential role, in the date palm resistance to the bayoud disease.





References:
[1] G. Toutain, V. Dollé, et M. Ferry, ‘‘Situation des systèmes oasiens en
régions chaudes,’’ Options Méditerranéennes Ciheam, 1990, pp. 7-18.
[2] R. Gaceb-Terrak, et F. Rahmania, ‘‘Analyse des lipides et autres
composés volatils de Deglet Nour, cultivar de palmier dattier Phoenix
dactylifera L., par chromatographie en phase gazeuse couplée à la
spectrométrie de masse,’’ Acta Botanica Gallica, Vol. 157 (1), 2010, pp.
127-33.
[3] N. Bounaga, et M. Djerbi, ‘‘Pathologies du palmier dattier, les systèmes
agricoles oasiens,’’ Option Méditerranéennes Ciheam, Sér. A (11),
1990, pp. 127-132.
[4] H. Sedra, ‘‘Disease and pest outbreaks - Bayoud disease on date palm in
Mauritania,’’ Arab and Near East Plant Protection Newsletter, 29, Arab
Society for Plant Protection, Aleppo (SY) and FAO Near East Regional
Office, Cairo (EG) 1999, 30p.
[5] R. Gaceb-Terrak, D. Touam, et F. Rahmania, ‘‘Action des acides
phénols du palmier dattier Phoenix dactylifera L. sur la croissance du
Fusarium oxysporum f. sp. albedinis,’’ Revue des Régions Arides, Vol.
III (21), 2008, pp. 1219-23.
[6] K. Perveen, N.A. Bokhari, and D.A.W. Soliman, ‘‘Antibacterial activity
of Phoenix dactylifera L. leaf and pit extracts against selected Gram
negative and Gram positive pathogenic bacteria,’’ Journal of the
Medicinal Plants Research, Vol. 6 (2), 2012, pp. 296-300.
[7] R. Gaceb-Terrak, Contribution à la connaissance des interactions
palmier dattier Phoenix dactylifera L.-agent causal du bayoud Fusarium
oxysporum f. sp. albedinis par analyses phytochimiques des lipides et
des phénylpropanoïdes,’’ Thèse Doct. d’État, Univ. Houari Boumediene
Alger, 2010, 214p.
[8] A. Vernenghi, ‘‘Réactions de défense du Lycopersicum esculentum Mill.
à des infections cryptogamiques : mises en évidence de phytoalexines et
de leurs propriétés inhibitrices,’’ Thèse de Doct. 3ème cycle, Paris VI,
1985.
[9] A. Vernenghi, J. Einhorn, G. Kunesch, C. Mallosse, F. Ramiandrasoa, et
A. Ravise, ‘‘Propriétés inhibitrices in vitro de dérivés oxygénés d’acides
gras polyinsaturés élaborés chez Lycopersicum esculentum Mill. à
l’infection par le Phytophtora parasitica Dast.,’’ C. R. acad. Sci., Sér.
III, 301 (16), 1985, pp. 743-749.
[10] A. Vernenghi, B. Taquet, J.L. Renard, et A. Ravise, ‘‘Détection chez le
palmier à huile de dérivés oxygénés d’acides gras polyéniques toxiques
pour le Fusarium oxysporum f. sp. elaeidis ; variation de leur
accumulation selon les croisements et les modalités de traitement,’’
Oléagineux, Vol. 42 (1), 1987, pp. 1-10.
[11] P.V. Subba Rao, J.P. Geiger, J. Einhorn, C. Malosse, B. Rio, M. Nicole,
S. Savary, et A. Ravise, ‘‘Isolement de linolénate de méthyle, un
nouveau composé fongitoxique des feuilles d’arachide (Arachis
hypogaea L.) infectées par Puccinia arachidis Speg.,’’ Oléagineux, Vol.
43 (4), 1988, pp. 173-177.
[12] Y.J. Im, M.S. Kim, K.Y. Yang, Y.H. Kim, K. Back and B.H. Cho,
‘‘Antisense expression of a ω-3 fatty acid desaturase gene in tobacco
plants enhances susceptibility against pathogens,’’ Canadian J. of
Botany, Vol. 82 (3), 2004, pp. 297-303.
[13] A. Yara, T. Yaeno, J.L. Montillet, M. Hasegawa, S. Seo, K. Kusumi, and
K. Iba, ‘‘Enhancement of disease resistance to Magnaporthe grisea in
rice by accumulation of hydroxylinoleic acid,’’ Biochemical and
Biophysical Research Communications, 2008, 370, pp. 344–347.
[14] M. Mezar Malem, ‘‘L’ail (Allium sativum L.): Aspects phytochimiques
et contribution à l’étude de quelques propriétés biologiques,’’ Thèse de
Doct. Univ. Montpellier 2, 1993, 167p.
[15] O. Leconte, ‘‘Etude des saponines stéroïdiques du fenugrec (Trigonella
foenum-graecum L.), activité antifongique et approches allélopathiques
in vitro,’’ Thèse de Doct. Univ. Montpellier 2, 1996, 225p.
[16] C.R. Yang, Y. Zhang, M.R. Jacob, S.I. Khan, Y-J. Zhang and X.C Li,
‘‘Antifungal activity of C-27 steroidal saponins, Antimicrob Agents,’’
Chemother, Vol. 50 (5), 2006, pp. 1710-1714.
[17] G.F. Killeen, C.A. Madigan, C.R. Connolly, G.A. Walsh, C. Clark, M.J.
Hynes, B.F. Timmins, P. James, D.R. Headon, and R.F. Power,
‘‘Antimicrobial saponins of Yucca schidigera and the implications of
their in vitro properties for theirs in vivo impact,’’ J. of Agri. and Food
Chemistry, Vol. 46, 1998, pp. 3178-3186.
[18] Y.L. Jin, J.H. Kuk, K.T. Oh, Y.J. Kim, X.L. Piao, and R.D. Park, ‘‘A
new steroidal saponin, yuccalan, from the leaves of Yucca smalliana,
Archives of Pharmacal Research, Vol. 30 (5), 2007, pp. 543-545.