Extraction of Graphene-Titanium Contact Resistances using Transfer Length Measurement and a Curve-Fit Method

Graphene-metal contact resistance limits the performance of graphene-based electrical devices. In this work, we have fabricated both graphene field-effect transistors (GFET) and transfer length measurement (TLM) test devices with titanium contacts. The purpose of this work is to compare the contact resistances that can be numerically extracted from the GFETs and measured from the TLM structures. We also provide a brief review of the work done in the field to solve the contact resistance problem.





References:
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric
Field Effect in Atomically Thin Carbon Films," Science, vol.
306, no. 5696, pp. 666-669, 2004. (Online). Available: http:
//www.sciencemag.org/cgi/content/abstract/306/5696/666
[2] A. K. Geim and K. Novoselov, "The Rise of Graphene," Nature
Materials, vol. 6, pp. 183-191, 2007. (Online). Available: http:
//dx.doi.org/10.1038/nmat1849
[3] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, pp.
487-496, 2010. (Online). Available: http://dx.doi.org/10.1038/nnano.
2010.89
[4] A. Venugopal, L. Colombo, and E. M. Vogel, "Contact resistance in
few and multilayer graphene devices," Applied Physics Letters, vol. 96,
no. 1, p. 013512, 2010. (Online). Available: http://link.aip.org/link/
?APL/96/013512/1
[5] K. Nagashio, T. Nishimura, K. Kita, and K. Toriumi, "Contact
resistivity and current flow path at metal/graphene contact," Applied
Physics Letters, vol. 97, no. 14, p. 143514, 2010. (Online). Available:
http://link.aip.org/link/?APL/97/143514/1
[6] F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, "The
origins and limits of metal-graphene junction resistance," Nature
Nanotechnology, vol. 6, pp. 179-184, 2011. (Online). Available:
http://dx.doi.org/10.1038/nnano.2011.6
[7] S. Russo, M. Craciun, M. Yamamoto, A. Morpurgo, and S. Tarucha,
"Contact resistance in graphene-based devices," Physica E: Lowdimensional
Systems and Nanostructures, vol. 42, no. 4, pp.
677 - 679, 2010, 18th International Conference on Electron
Properties of Two-Dimensional Systems. (Online). Available: http:
//www.sciencedirect.com/science/article/pii/S1386947709005165
[8] D. Schroder, Semiconductor Material and Device Characterization.
Wiley, 2006.
[9] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto,
A. F. Morpurgo, and P. J. Hakonen, "Shot noise in ballistic graphene,"
Phys. Rev. Lett., vol. 100, p. 196802, May 2008. (Online). Available:
http://link.aps.org/doi/10.1103/PhysRevLett.100.196802
[10] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc,
and S. K. Banerjee, "Realization of a high mobility dual-gated
graphene field-effect transistor with Al2O3 dielectric," Applied Physics
Letters, vol. 94, no. 6, p. 062107, 2009. (Online). Available:
http://link.aip.org/link/?APL/94/062107/1
[11] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2004.