Effect of Oyster Mushroom on Biodegradation of Oil Palm Mesocarp Fibre

The problem of degradation of agricultural residues
from palm oil industry is increasing due to its expansion.
Lignocelloulosic waste from these industry represent large amount of
unutilized resources, this is due to their high lignin content. Since
white rot fungi are capable of degrading lignin, its potential for the
degradation of lignocelloulosic waste from palm oil industry was
accessed. The lignocellluloses content was measured before and after
biodegradation and the rate of reduction was determined. From the
results of the biodegradation, it was observed that hemicellulose
reduces by 22.62%, cellulose by 20.97% and lignin by 10.65% from
the initials lignocelluloses contents. Thus, to improve the digestibility
of palm oil mesocarp fibre, treatment by white rot-fungi is
recommended.





References:
[1] Anwar, Z, Muhammad, G, Muhammad I. “Agro-indusrial
lignocellulosic biomass a key to unlock the future bio-energy: A brief
review”. 2014. J. Rad. Appl. Sci. 7 163-173.
[2] Palacios-Orueta, A., Chuvieco, E., Parra, A. and Carmona-Moreno, C.
Biomass Burning Emissions: “A Review of Models Using Remote-
Sensing Data”. Environ. Model. Assess.. Environ. 2005. 104(1), 189-
209.
[3] Pe’rez J. Mun “oz-Dorado de la Rubia T, Marti’nez J. “Biodegradation
and biological treatments of cellulose, hemicellulose and lignin: an
overview”. 2002. Int. Microbiol. 5: 53-63.
[4] Adebayo E. A, Martinez-Carrera D. “Oyster mushroom (Pleurotus) are
useful for utilizing lignocellulosic biomass”. Afr. J. Biotechnol. 2015. 14
(1), 52-65.
[5] Fengel, D., Wegener, G. Wood: Chemistry, Ultrastructure, Reactions.
De Gruyter, Berlin. 1984.
[6] Pandey, R. K. “A study of chemical structure of soft and hardwood and
wood polymers by FTIR spectroscopy”. J Appl Polym Sci.1999 71,
1969–1975.
[7] Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. and Levin, D. B.
(2011). “Biomass pretreatment: Fundamentals toward application”.
Biotech Adv. 29(6), 675-685.
[8] Kumar, R., Singh, S. and Singh, O. “Bioconversion of lignocellulosic
biomass: biochemical and molecular perspectives”. J. Ind. Microbiol.
Biotechnol. 2008. 35(5), 377-391.
[9] Zhang, Y.-H. P., Ding, S.-Y., Mielenz, J. R., Cui, J.-B., Elander, R. T.,
Laser, M., Himmel, M. E., McMillan, J. R. and Lynd, L. R.
“Fractionating recalcitrant lignocellulose at modest reaction conditions”.
Biotechnol. Bioeng. 2007. 97(2), 214-223.
[10] Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K. “Bioethanol
production from agricultural wastes: An overview”. Renew. Energy.
2012.37(1), 19-27.
[11] Saidu, M., Salim, M. R. and Yuzir., M. A. M. “Cultivation of oyster
mushroom (Pleurotus spp.) on palm oil mesocarp fibre”. Afr. J.
Biotechnol. 2011. 10(71), 15973-15976.
[12] Bayer, E. A., Chanzy, H., Lamed, R. and Shoham, Y. “Cellulose,
cellulases and cellulosomes”. Curr. Opin. Struct. Biol. 1998. 8(5), 548-
557.
[13] Ljungdahl, L. G. “The Cellulase/Hemicellulase System of the Anaerobic
FungusOrpinomycesPC-2 and Aspects of Its Applied Use”. Ann. Ny.
Acad. Sci. 2008. 1125(1), 308-321.
[14] Sánchez, C. “Lignocellulosic residues: Biodegradation and
bioconversion by fungi”. Biotechnol Adv. 2009. 27(2), 185-194.
[15] Weng, J.-K., Li, X., Bonawitz, N. D. and Chapple, C. “Emerging
strategies of lignin engineering and degradation for cellulosic biofuel
production”. Curr.Opin. Biotechnol. 2008. 19(2), 166-172.
[16] Isroi, Millati R, Syamsiah S, Niklasson C, Cahyanto M N, Lundquist K
and Taherzadeh M J. Biological Pretreatment of lignocelluloses with
white-rot fungi and its application: A review. BioResources. 2011. 6(4),
5224-5259
[17] Das, H. and Singh, S. K. “Useful Byproducts from Cellulosic Wastes of
Agriculture and Food Industry—A Critical Appraisal”. Crit Rev. Food.
Sci. 2004. 44(2), 77-89.
[18] Foyle, T., Jennings, L. and Mulcahy, P. “Compositional analysis of
lignocellulosic materials: Evaluation of methods used for sugar analysis
of waste paper and straw”. Bioresor. Technol. 2007. 98(16), 3026-3036.
[19] Pandey, A., Soccol, C. R., Nigam, P. and Soccol, V. T.
“Biotechnological potential of agro-industrial residues. I: sugarcane
bagasse”. Bioresor. Technol. 2000. 74(1), 69-80.
[20] Galbe, M. and Zacchi, G. “Pretreatment of Lignocellulosic Materials for
Efficient Bioethanol Production Biofuels”. In Olsson, L. (Ed.) 2007
(Vol. 108, pp. 41-65) Springer Berlin / Heidelberg.
[21] Mtui, G. Y. S. “Trends in industrial and environmental biotechnology
research in Tanzania”. Afr. J. Biotechnol. 2007. 6 (25), 2860-2867.
[22] Mtui, G. Y. S. “Recent advances in pretreatment of lignocellulosic
wastes and production of value added products”. Afr. J. Biotechnol.
2009. 8(8), 1398-1415.
[23] Maki, M., Leung, K. T. and Qin, W. “The prospects of cellulaseproducing
bacteria for the bioconversion of lignocellulosic biomass”.
Int. J. Biol Sci. 2009. 5(5), 500-516.
[24] Sinegani, A. A. S., Emtiazi, G., Hajrasuliha, S. and Shariatmadari, H.
“Biodegradation of some agricultural residues by fungi in agitated
submerged culture”. Afr. J. Biotechnol. 2005. 4(10), 1058-1061.
[25] Patil, S. S., Ahmed, S. A., Telang, S. M. and Baig, M. M. V. “The
nutritional value of Pleurotus ostreatus (JACQ.:FR.) kumm cultivate on
different lignocellulosic agrowaste”. Innov. Rom. Food. Biotechnol.
2010. 7, 66-76.
[26] Sánchez, C. “Cultivation of Pleurotus ostreatus and other edible
mushrooms”. Appl. Microbiol. Biotechnol. 2010.85(5), 1321-1337.
[27] Datta, R. “Acidogenic Fermentation of Lignocellulose-Acid Yield and
Conversion of Components”. Biorechnol. Bioeng. 1981. 23(9), 2167-
2170.
[28] Arora, D. S. and Sharma, R. K. “Comparative ligninolytic potential of
Phlebia species and their role in improvement of in vitro digestibility of
wheat straw”. J. Anim Feed Sci. 2009. 18, 151–161.
[29] Steel R. G. D, Torrie J. H. “Principles and procedures of statistics”.
McGraw Hill Co, Inc. 1080. New York, USA.
[30] Hadar, Y., Kerem, Z., Gorodecki, B. and Ardon, O. “Utilization of
lignocellulosic waste by the edible mushroom Pleurotus”.
Biodegradation. 1992. 3(2), 189-205.
[31] Pani, B. K. “Evaluation of Some Substrates for Cultivation of White
Summer Mushroom (Calocybe indica)”. J. Agric Sci. 2010. 1 (4), 357-
359.
[32] Müller, M. M., Sundman, V., Soininvaara, O. and Meriläinen, A. “Effect
of chemical composition on the release of nitrogen from agricultural
plant materials decomposing in soil under field conditions”. Biol. Fert
Soil. 1988. 6(1), 78-83.
[33] Summerell, B. A. and Burgess, L. W. “Decomposition and chemical
composition of cereal straw”. Soil Biol Biochem. 1989. 21(4), 551-559.
[34] Waldrop, M. P., Balser, T. C. and Firestone, M. K. (2000). “Linking
microbial community composition to function in a tropical soil”. Soil
Biol Biochem. 2000. 32, 1837–1846.
[35] Kumar, R., Singh, S. and Singh, O. “Bioconversion of lignocellulosic
biomass: biochemical and molecular perspectives”. J. Ind Microbiol
Biotechnol. 2008. 35(5), 377-391.
[36] Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-
Wasilewska, M., Cho, N.-S., Hofrichter, M. and Rogalski, J.
“Biodegradation of Lignin by White Rot Fungi”. Fungal Genet Biol.
1999. 27(2–3), 175-185.
[37] Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E. and
Ljungdahl, L. G.” Feruyl and p-coumayrol esterase from anaerobic fungi
in relation to plant cell wall degradation”. Appl. Microbial Biotechnol.
1990. 33, 345-351.
[38] Bisaria, R., Madan, M. and Mukhopadhyay, S. N. “Production of biogas
from residues from mushroom cultivation”.Biotechnol Lett. 1993. 5(12),
811-812. [39] Hossain, S., Khalil, M. I., Alam, M. K., Khan, M. A. and Alam, N.
“Upgrading of Animal Feed by Solid State Fermentation by Pleurotus
sajor-caju”. Euro. J App. Sci. 2009.1(4), 53-58.