Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurement were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25oC and 60% RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.




References:
[1] J. H. Dong, E. H. Han, W. Ke, “Introduction to atmospheric corrosion
research in China”, Sci. Technol. Adv. Mater., vol.8, 2007, pp. 559–565.
[2] W. J. Chen, Long Hao, Junhua Dong, Wei Ke, “Effect of sulphur dioxide
on the corrosion of a low alloy steel in simulated coastal industrial
atmosphere”, Corros. Sci., vol.83 ,2014, pp.155–163
[3] C. Leygraf, T. Graedel, Atmospheric Corrosion, John Wiley & Sons, Inc.,
New York, 2000.
[4] M. Stratman, H. Streckel, “On the Atmospheric Corrosion of Metal which
are covered with thin electrolyte layers–II. Experimental Results”.
Corros. Sci., vol. 30, 1990, pp. 697–714.
[5] M. Stratman, H. Streckel, “On the Atmospheric Corrosion of Metal which
are covered with thin electrolyte layers–III. The measurement of
polarisation curves on metal surfaces which are covered by thin
electrolyte layers”. Corros. Sci., vol. 30,(1990, pp. 715–734.
[6] N. D. Tomashov, Development of the electrochemical theory of metallic
corrosion, Corrosion, vol. 20, 1964, pp. 7–14.
[7] L. Hao, S. X. Zhang, J. H. Dong, W. Ke, “Rusting evolution of MnCuP
weathering steel submitted to simulated industrial atmospheric corrosion,
Metall. Mater. Trans. A, vol. 43, 2012, pp. 1724–1730.
[8] J. Dong, J. H. Dong, E. H. Han, “Rusting evolvement of mild steel under
wet/dry cyclic condition with pH 4 NaHSO3 solution”, Corros. Sci. Prot.
Technol., vol. 21, 2009, pp. 1–4.
[9] T. Tsuru, A. Nishikata, J. Wang, “Electrochemical studies on corrosion
under a water film”, Mater. Sci. Eng. A, vol.198, 1995, pp.161–168.
[10] A. Nishikata, Y. Ichihara, Y. Hayashi, T. Tsuru, “Influence of electrolyte
layer thickness and pH on the initial stage of the atmospheric corrosion of
iron”, J. Electrochem. Soc., vol. 144, 1997, pp. 1244–1252.
[11] L. Hao, S. X. Zhang, J. H. Dong, W. Ke, “Evolution of atmospheric
corrosion of MnCuP weathering steel in a simulated coastal-industrial
atmosphere”, Corros. Sci., vol. 59, 2012, pp. 270–276.
[12] Ch. Thee, L. Hao, J. H. Dong, X. Wie, X. F. Li, W. Ke, “Atmospheric
corrosion monitoring of a weathering under an electrolyte film in cyclic
wet-dry condition”, Corros. Sci., vol. 59, 2012, pp. 270–276.
[13] L. Hao, S. X. Zhang, J. H. Dong, W. Ke, “Atmospheric corrosion
resistance of MnCuP weathering steel in simulated environments”,
Corros. Sci., vol. 53, 2011, pp. 4187−4192.
[14] ASTM D 5032-97 , Standard Practice for Maintaining Constant Relative
Humidity by Means of Aqueous Glycerin Solutions, ASTM International,
West Conshohocken, PA, 2003.
[15] X. X. Fu, J. H. Dong, E. H. Han, W. Ke, “A new experimental method for
in situ corrosion monitoring under alternate wet- dry conditions”,
Sensors, vol.9, 2009, pp. 10400–10410.
[16] S. X. Li, J. H. Dong, E. H. Han, W. Ke, “Evolvement of electrochemical
impedance spectra of a bi-electrode cell for carbon steel in the initial stage
of wet/dry process”, Corros. Sci. Prot. Technol., vol.19, 2007, pp.
167–170.
[17] L. Hao, S. X. Zhang, J. H. Dong, W. Ke, “Corrosion evolution of MnCuP
weathering steel submitted to wet/dry cyclic tests in a simulated coastal
atmosphere”, Corros. Sci., vol. 58, 2012, pp. 175–180.
[18] I. M. Allam, J. S. Arlow, H.Saricimen, “Initial stage of atmospheric
corrosion of steel in The Arabian gulf”, Corros. Sci., vol. 32, 1991, pp.
417–432
[19] W. J. Lorenz, F. Mansfeld, “Determination of corrosion rates by
electrochemical DC and AC methods”, Corros. Sci., vol. 21, 1981, pp.
647–672.
[20] F. Masfeld, S. Lin, Y. C. Chen, “Minimization of high-frequency
phase-shifts in impedance measurements”, J. Electrochem. Soc., vol. 135,
1988, pp. 906–907.
[21] R. G. Kelly, J. R. Scully, D. W. Shoesmith, R. G. Buchheit,
Electrochemical techniques in corrosion science and engineering, Marcel
Dekker Inc, 2002. R. Evans, “Mechanism of atmospheric rusting”,
Corros. Sci., vol. 9, 1969, pp. 813–821.
[22] M. E. Orazem, B. Tribolet, Electrochemical Impedance Spectrography,
John Wiley & Sons, Inc., New Jersey, 2008.
[23] C. N. Cao, Principles of Electrochemistry of Corrosion, Chemical
Industry Press, Beijing, 2004.
[24] S. H. Zhang, S. B. Lyon, “Anodic processes on iron covered by thin,
dilute electrolyte layers (I)–Anodic Polarisation”, Corros. Sci., vol.36,
1994, pp.1289–1307. [25] S. H. Zhang, S. B. Lyon, “Anodic processes on iron covered by thin,
dilute electrolyte layers (II)–AC impedance measurements”, Corros. Sci.,
vol 36, 1994, pp. 1309–1321.
[26] A. P. Yadav, A. Nishikata, T. Tsuru, “Electrochemical impedance study
on galvanized steel corrosion under cyclic wet-dry conditions–influence
of time of wetness”, Corros. Sci., vol. 46, 2004, pp. 169–181.
[27] A. P. Yadav, A. Nishikata, T. Tsuru, “Evaluation of impedance spectra of
zinc and galvanised steel corroding under atmospheric environments”,
Corros. Eng. Sci. Technolo., vol .45, 2008, pp. 23–29.
[28] A. Nishikata, F. Suzuki, T. Tsuru, “Corrosion monitoring of
nickel-containing steels in marine atmospheric environment”, Corros.
Sci., vol. 47, 2005, pp. 2578–2588.
[29] Ch. Thee, Long Hao, Junhua Dong, Mu Xin, Wei Ke, “One numerical
approach for atmospheric corrosion monitoring based on EIS of a
weathering steel ”, Acta Metallurgica Sinica (English Letter), 2014. DOI
10.1007/s40195-014-0193-5.
[30] T. Nishimura, H. Katayama, K. Noda, T. Kodama, “Electrochemical
behavior of rust formed on carbon steel in a wet/dry environment
containing chloride ions”, Corrosion, vol. 56, 2000, pp. 935–941.
[31] D.D.N. Singh, S. Yadav, J.K. Saha, “Role of climate conditions on
corrosion charecteristics of structural steels”, Corros. Sci., vol. 50, 2008,
pp.93–110.
[32] U. R. Evans, “Mechanism of atmospheric rusting”, Corros. Sci., vol. 9,
1969, pp. 813–821
[33] T. Misawa, T. Kyuno, W. Suёtaka, S. Shimodaira, “The mechanism of
atmospheric rusting and the effect of Cu and P on the rust formation of
low alloy steel”, Corros. Sci., vol. 11, 1971, pp. 33–48.
[34] T. Misawa, “The mechanism of atmospheric rusting and the protective
amorphous rust on low alloy steel”, Corros. Sci., vol. 14, 1974, pp.
279–289.
[35] J. H. Wang, F. I. Wei, Y. S. Chang, H. C. Shih, “The corrosion
mechanisms of carbon steel and weathering steel in SO2 polluted
atmospheric”, Mat. Chem. Phys., vol.47, 1977, pp. 1-8.
[36] E. Mccafferty, Introduction to Corrosion Science, Springer science and
Business Media, New York, 2010.
[37] K. Bartoň, Protection against atmospheric corrosion, A
Wiley-Interscience Publication, 1973.
[38] I. Suzuki, N. Masuko, T. Hisamatsu, “Electrochemical properties of iron
rust”, Corros. Sci., vol. 19, 1979, pp. 521–535.
[39] Joseph T. Keiser, Chris W. Brown, “Charaterization of the passive film
formed on weathering steels” C, Corros. Sci., vol. 23, 1983, pp. 251–259.
[40] I. Matsushima, T. Ueno, “On the protective nature of atmospheric rust on
low alloy steel”, Corros. Sci., vol. 11, 1971, pp. 129–140.