Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces

Empirical force fields and density functional theory (DFT) was used to study the binding energies and structures of methylamine on the surface of activated carbons (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the aminecarboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of -9.227 (kcal/mol) which agreed with PW91 at - 13.17 (kcal/mol), compared to DFF 0 (kcal/mol) and UFF -0.72 (kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.




References:
[1] D. Mohan D, K.P. Sigh and V.K. Sigh: Wastewater treatment using low
cost activated carbons derived from agricultural byproducts. Journal of
hazardous materials Vol.152 pg. 1045-1053, 2008.
[2] O.S. Amuda, A. A. Giwa and I.A. Bello: Removal of heavy metals from
industrial waste water using modified Activated carbon coconut shell.
Biochemical Engineering journal Vol. 36 pg. 174-181 2007
[3] F.H. Frimmel, M. Assenmacher, M. U. Kumke, C. Specht: Removal of
hydrophobic compounds from water with organic polymers: The
adsorption behavior of industrial waste water. Vol. 41 pg. 731-736,
2004.
[4] F. Rodriguez-Reinoso: The role of carbon materials in heterogeneous
catalysis, Carbon vol. 36, pg. 159-175, 1998.
[5] J. A. Menendez, B. Xia, J. Phillips and L.R. Radovic: On the
modification and characterization of chemical surface properties of
activated carbon: Micro calorimetric, electrochemical, and thermal
desorption probes, Langmuir, 13 (13), pg. 3414-3421, 1997.
[6] J.P. Chen, S.N. Wu and K.H Chong. Surface modification of a granular
activated carbon by citric acid for enhancement of copper adsorption.
Carbon 41:1979-1986, 2003.
[7] H. Kasaini, K. R. Mbaya: Continuous adsorption of Pt ions in a batch
reactor and packed bed column. Hydrometallurgy 07, 111-118, 2009.
[8] H. Zhang , I.M. Ritchie ; S.R. La Brooy. The adsorption of gold Thiourea
complex onto activated carbon. Hydrometallurgy 72:3-4, 2004.
[9] K.L.L Rees, J.S.J. Van Deventer and R.C. Dume. Gold process
modeling. The effect of ore type on leaching and adsorption dynamics at
Telfer gold mine, Miner. Eng. 14 (8):887-900, 2001.
[10] N. Syna and M. Valix. Modeling of gold (I) cyanide adsorption based on
the properties of activated bagasse. Miner. Eng. 16 (5): 421-427, 2003 .
[11] F. R. Stephen, R. Dimeska, S. Little and G. G. Wallace: Platinum
recovery using inherently conducting polymers and common fabrics,
fibres and polymers, Vol.8 No.5, 463-469, 2007.
[12] L. Ramos, J. Ovalle-Turribiartes, M.A. Sanchez-Castillo. Adsorption of
fluoride from aqueous solution on aluminum-impregnated carbon.
Carbon 37:609-617, 1999.
[13] H. Kasaini, M. Goto and S. Furusaki. Adsorption performance of
activated carbon pellets immobilized with organo phosphorus extractants
and amines: a case study for the separation of Pt (IV), Pd (II), and Rh
(III) ions in chloride media. Separation Science and Technology, 36(13):
2845-2861, 2001.
[14] H. Kasaini, Everson R.C. and O.S.L. Bruinsma: Selective adsorption of
platinum from mixed solutions containing base metals using chemically
modified activated carbons. Separation Technology, 40:507-523, 2005.
[15] W. Yantasee; Y. Lin ; K. L. Alford ; B. J. Busche ; G. E. Fryxell and
Mark H. Engelhard : Electrophlic aromatic substitution of amine and
sulfonate auto fine grained activated carbon for aqueous phase metal ion
removal , Separation Science and Technology ,Vol. 39 (14) pg. 3263-
3279, 2004.
[16] K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, K. Ueda, Adsorption of
platinum (1V), palladium (II) and gold (III) from aqueous solutions into
L-lysine modified cross linked chitosan resin. Journal of Hazardous
Material Vol. 146, 2007.
[17] M. Georgakis, G. Stavropoulos and G.P. Sakellaropoulos : Molecular
dynamics study of hydrogen adsorption in carbonaceous material and the
effect of oxygen functional groups. International Journal of Hydrogen
Energy Vol. 32(12), pg. 1999-2004, August 2007.
[18] S. A. Hall, I. Hamerton, B. J. Howlin and , A. L. Mitchell: Validating
software and force fields for predicting the mechanical and physical
properties of poly (bis-benzoxazine), Molecular Simulation, 34: 10,
1259 -1266, 2008.
[19] P. Fouquet, M.R. Johnson, H. Hedgeland, A. P. Jardine, J. Ellis and W.
Allison Molecular dynamics simulation of the diffusion of benzene submonolayer
films on graphite basal plane surfaces, Carbon 47: 627-2639,
2009.
[20] A. Miyamoto, M. Kubo, Lv. Chen, P. Selvan , Xxiaojing Wang , A
theoretical study on the cyclopropane adsorption onto copper surfaces by
density quantum chemical molecular dynamics methods, Journal of
molecular catalysis A: chemical 220, 2004.
[21] D. K├╝nzel, T. Market, and A. Grob, D. M. Benoit: Bis (terpyridine)-
based surface template structures on graphite - A forcefield and DFT
study. Institute for Theoretical Chemistry, University of Ulm, D-89069
Ulm, Germany, 2009.
[22] Accelrys, Materials Studio Online Help, Release 5.0, Accelrys Software,
Inc., San Diego, CA, 2009.
[23] H. Sun, P. Ren, J.R. Fried, The Compass Force Field: Parameterization
and validation for phosphazenes, Computational Theory, Polymer Sci.
Vol. 8 229-246, 1998.
[24] S. L. Mayo, B. D. Olafson, and W. A. Goddard III DREIDING: A
Generic Force Field for Molecular Simulations J. Phys. Chem. 94, 8897-
8909, 1990.
[25] A. K. Rappe C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M.
Skid : UFF, a full periodic table force field for molecular mechanics and
molecular dynamics simulations J. Am. Chem. SOC., 114, 10024-10039,
1992.
[26] M. Pavelka, J. V. Burda: Pt -bridges in various single strand and doublehelix
DNA sequences. DFT and MP2 study of the cisplatin coordination
with guanine adenine and cytosine , J Mol Model 13: 367-379, 2007.
[27] W. Wu , A. Al-Ostaz, A. H. D. Cheng, C. R. Song : Thesis -Properties
of Portland cement major constituent using molecular dynamics
simulations , Department of Civil Engineering, University of
Mississippi, University, MS 38677, USA
[28] B. Liu, M. T. Lusk and J. F. Ely: Influence of Nickel Catalyst Geometry
on the Dissociation Barriers of H2 and CH4: Ni13 versus Ni (111), J.
Phys. Chem. 113:13715-13722, 2009.
[29] S.F. Sousa, P. A. Fernandes, M. J. Ramos 2007: General Performance of
density functional, J. Phys. Chem. A :111, 10439-10452, 2007
[30] J. P. Perdew, J. A. Chevary, S. H. Vosko, K.A. Jackson, M.R. Pederson,
D.J. Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approximation for exchange
and correlation. Phys. Rev. B, 46:6671, 1992.
[31] J. P. Perdew K. Burke Y. Wang, Phys. Rev. B 54, 16533, 1996.
[32] S. Tsuzuki, H. P. Lu¨thi, J. Chem. Phys., 114: 3949, 2001.
[33] D. R. Alfonso , K. Karapetian, D. C. Sorescu, and K. D. Jordan:
Characterization of Water Clusters in Organic Molecular Hosts from
Density Functional Theory Calculations, J. Phys. Chem. B, 108, 3431-
3436, 2004.
[34] D. H. Chi, N. T. Cuong, N. A. Tuan, Yong-Tae Kim, Ho Tu Bao
Tadaoki Mitani, Taisuke Ozaki, Hidemi Nagao: Electronic structures of
Pt clusters adsorbed on 5,5 single wall carbon nanotube, Chemical
Physics letters 432, 2006.
[35] M. A. Fox and J. K. Whitesell: Organic Chemistry, 3rd Edition (1994)
ISBN 978086-7202 076, pg 76-77 and 112-113.