Coherence Analysis for Epilepsy Patients: An MEG Study

It is crucial to quantitatively evaluate the treatment of epilepsy patients. This study was undertaken to test the hypothesis that compared to the healthy control subjects, the epilepsy patients have abnormal resting-state connectivity. In this study, we used the imaginary part of coherency to measure the resting-state connectivity. The analysis results shown that compared to the healthy control subjects, epilepsy patients tend to have abnormal rhythm brain connectivity over their epileptic focus.




References:
[1] M. Hampson, B.S. Peterson, P. Skudlarski, J.C. Gatenby, J.C. Gore,
"Detection of functional connectivity using temporal correlations in MR
images, " Hum Brain Mapp., 15, pp.247-262, 2002.
[2] C.F. Beckmann, M. DeLuca, J.T. Devlin, S.M. Smith, "Investigations into
resting-state connectivity using independent component analysis," Philos
Trans R Soc Lond B Biol Sci, 360, pp.1001-1013, 2005.
[3] W.W. Seeley, V. Menon, A.F. Schatzberg, J. Keller, G.H. Glover, H.
Kenna, A.L. Reiss, M.D. Greicius, "Dissociable intrinsic connectivity
networks for salience processing and executive control," J Neurosci, 27,
pp.2349-2356, 2007.
[4] M.E. Raichle, A.M. MacLeod, A.Z. Snyder, W.J. Powers, D.A. Gusnard,
G.L. Shulman, "A default mode of brain function," Proc Natl Acad Sci
USA, 98, pp.676-682, 2001.
[5] M.D. Greicius, B. Krasnow, A.L. Reiss, V. Menon, "Functional
connectivity in the resting brain: A network analysis of the default mode
hypothesis," PNAS, 7, 100(1), pp.253-258, 2003.
[6] M.D. Greicius, K. Supekar, V. Menon, R.F. Dougherty, "Resting-state
functional connectivity reflects structural connectivity in the default mode
network," Cerebral Cortex, 19, pp.72-78, 2009.
[7] M. Lowe, E. Beall, K. Sakaie, K. Koenig, L. Stone, R. Marrie, M. Phillips,
"Resting state sensorimotor functional connectivity in multiple sclerosis
inversely correlates with transcallosal motor pathway transverse
diffusivity," Hum Brain Mapp., 29(7), pp.818-827, 2008.
[8] T. Harmony, E. Marosi, T. Fernández, J. Bernal, J. Silva, M. Rodríguez,
A. Reyes, A. Fernández-Bouzas, M. Alonso, R. Mendizábal R,et al.,
"EEG coherences in patients with brain lesions," Int J Neurosci, 74,
pp.203-226, 1994.
[9] F. Bartolomei, I. Bosma, M. Klein, J.C. Baayen, J.C. Reijneveld, T.J.
Postma, J.J. Heimans, et al, "How do brain tumors alter functional
connectivity? A magnetoencephalography study," Ann Neurol, 59,
pp.128-138, 2006.
[10] P.L. Nunez, R. Srinivasan, A.F. Westdorp, R.S. Wijesinghe, D.M. Tucker,
R.B. Silberstein, P.J. Cadusch, "EEG coherency. I: Statistics, reference
electrode, volume conduction, Laplacians, cortical imaging, and
interpretation at multiple scales," Lectroencephalogr Clin Neurophysiol,
103, pp.499-515, 1997.
[11] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett,
"Identifying true brain interaction from EEG data using the imaginary part
of coherency," Clin Neurophysiol, 115, pp.2292-2307, 2004.
[12] T. Medkour, A.T. Walden, A.P. Burgess, "Graphical modelling for brain
connectivity via partial coherence," J Neurosc. Methods, 180,
pp.374-383, 2009.
[13] P.D. Welch, "The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short, modified
periodograms," IEEE Trans Audio Electroacoust, AU-15, pp.70-73,
1967.
[14] A.M. Siegel, B.C. Jobst, V.M. Thadani, C.H. Rhodes, P.J. Lewis, D.W.
Roberts, P.D. Williamson, "Medically intractable, localization-related
epilepsy with normal MRI: presurgical evaluation and surgical outcome
in 43 patients," Epilepsia, 42, 7, pp.883-888, 2001.