Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes

In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%).




References:
[1] S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi and M. S. Jhon. Synthesis
and dispersion characteristics of multi-walled carbon nanotube
composites with poly (methyl methacrylate) prepared by in-situ bulk
polymerization. Macromol Rapid Commun 24:1070-1073, 2003.
[2] N. Grossiord, J. Loos, O. Regev and C. E. Koning. Toolbox for
dispersing carbon nanotubes into polymers to get conductive
nanocomposites. Chem Mater 18:1089-1099, 2006.
[3] R. Andrews and M. C. Weisenberger. Carbon nanotube polymer
composites. Curr Opin Solid State Mater Sci 8:31-37, 2004.
[4] Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum,
J. Joo and W. N. Kim. Rheological and electrical properties of
polycarbonate/multi-walled carbon nanotube composites. Polymer
47:4434- 4439, 2006.
[5] A. Maity and M . Biswas. Recent progress in conducting polymer,
mixed polymer-inorganic hybrid nanocomposites. J Ind Eng Chem
12:311-351, 2006.
[6] N. Grossiord, J. Loos, C. E. Koning. Strategies for dispersing carbon
nanotubes in highly viscous polymers. J Mater Chem 15:2349-2352,
2005.
[7] S. S. Ray, S. Vaudreuil, A. Maazouz and M. Bousmina. Dispersion
of multi-walled carbon nanotubes in biodegradable poly (butylene
succinate) matrix. J Nanosci Nanotech 6:2191-2195, 2006.
[8] S. Vaudreuil, A. Labzour, S. S. Ray, K. E. Mabrouk and M. Bousmina.
Dispersion characteristics and properties of poly (methyl
methacrylate)/multi-walled carbon nanotubes nanocomposites. J
Nanosci Nanotech 7:2349-2355, 2007.
[9] S. T. Kim, H. J. Choi and S. M. Hong. Bulk polymerized polystyrene in
the presence of multiwalledcarbon nanotubes. Colloid Polym Sci
285:593-598, 2007.
[10] H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. W. Han, L. S. Tan and J. B.
Baek. In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene
glycol containing terephthalic acid and functionalized multiwalled
carbon nanotubes (MWNTs) as an approach to MWNT/PET
nanocomposites. Chem Mater 17:5057-5064, 2005.
[11] R. Andrews, D. Jacques, D. Qian and T. Rantell. Multiwall carbon
nanotubes: synthesis and application. Acc Chem Res 35:1088-1017,
2002.
[12] M. Moniruzzaman and K. Winey. Polymer nanocomposites containing
carbon nanotubes. Macromolecules 39:5194-5205, 2006.
[13] Chin-San Wu, Hsin-Tzu Liao, Study on the preparation and
characterization of biodegradable polylactide/multi-walled carbon
nanotubes nanocomposites, Polymer 48, 4449-4458, 2007.
[14] B. Kumar, M. Castro and J.F. Feller. Poly (lactic acid)-multi-wall
carbon nanotube conductive biopolymer nanocomposite vapour sensors,
Sensors and Actuators B 16, 621- 628, 2012.
[15] S. W. Ko, M. K. Hong, B. J. Park, R. K. Gupta, H. J. Choi, S. N.
Bhattacharya, Morphological and rheological characterization of multiwalled
carbon nanotube/PLA/PBAT blend nanocomposites, Polym.
Bull. 63:125-134, 2009.
[16] Chen-Feng Kuana, Chia-Hsun Chena,_, Hsu-Chiang Kuana, Kun-Chang
Lina, Chin-Lung Chiangb, Hsin-Chin Penga Multi-walled carbon
nanotube reinforced poly (L-lactic acid) nanocomposites enhanced by
water-crosslinking reaction, Journal of Physics and Chemistry of Solids
69, 1399-1402, 2008.
[17] A. Bhatia, R. K. Gupta, S. N. Bhattacharya, H. J. Choi. Compatibility of
biodegradable poly (lactic acid) (PLA) and poly (butylene succinate)
(PBS) blends for packaging application. Korea-Australia Rheol J
19:125-131, 2007.
[18] T. M. Wu and M. F. Chiang. Fabrication and characterization of
biodegradable poly (lactic acid)/ layered silicate nanocomposites. Polym
Eng Sci 45:1615-1621, 2005.
[19] Michael B. Heaney. The Measurement, Instrumentation and Sensors
Handbook, chapter Electrical Conductivity and Resistivity. CRC Press,
1999.
[20] Chin-San Wu, Hsin-Tzu Liao, Study on the preparation and
characterization of biodegradable polylactide/multi-walled carbon
nanotubes nanocomposites. Polymer 48 4449-4458, 2007.
[21] M. A. Haque, M. F. Mina, A.K.M. M. Alam, M. J. Rahman, M. A. H.
Bhuiyan, and T. Asano, Multi-Walled Carbon Nanotubes Reinforced
Isotactic Polypropylene Nanocomposites: Enhancement of
Crystallization and Mechanical, Thermal and Electrical Properties,
Polymer Composites, 33, 1094-1104, 2012.
[22] W, Hoogsteen, A. R. Postema, Pennings AJ, Brinke GT. Crystal
Structure, Conformation, and Morphology of Solution-Spun Poly(Llactide)
Fibers Macromolecules 1990; 23: 634-642.
[23] T. M. Wu, C. Y. Wu. Biodegradable poly(lactic acid)/chitosan-modified
montmorillonite nanocomposites: Preparation and characterization.
Polym Degrad Stab; 91: 2198-2204, 2006.
[24] M. Pluta and A. Galeski. Crystalline and supermolecular structure of
polylactide in relation to the crystallization method. J Appl Polym Sci;
86: 1386, 2002.
[25] P. V. Joseph, K. Joseph, C. K. S. Thomas Pillai, V. S. Prasad, G.
Groeninckx and M. Sarkissova. The thermal and crystallization studies
of short sisal fiber reinforced polypropylene composite. Composite Part
A, 34(3), 253-266, 2003.
[26] Chen-Feng Kuana, Hsu-Chiang Kuana, Chen-Chi M. Mab, Chia-Hsun
Chena Mechanical and electrical properties of multi-wall carbon
nanotube/poly(lactic acid) composites, Journal of Physics and Chemistry
of Solids 69, 1395-1398, 2008.