Biosensor Design through Molecular Dynamics Simulation

The beginning of 21st century has witnessed new
advancements in the design and use of new materials for biosensing
applications, from nano to macro, protein to tissue. Traditional
analytical methods lack a complete toolset to describe the
complexities introduced by living systems, pathological relations,
discrete hierarchical materials, cross-phase interactions, and
structure-property dependencies. Materiomics – via systematic
molecular dynamics (MD) simulation – can provide structureprocess-
property relations by using a materials science approach
linking mechanisms across scales and enables oriented biosensor
design. With this approach, DNA biosensors can be utilized to detect
disease biomarkers present in individuals’ breath such as acetone for
diabetes. Our wireless sensor array based on single-stranded DNA
(ssDNA)-decorated single-walled carbon nanotubes (SWNT) has
successfully detected trace amount of various chemicals in vapor
differentiated by pattern recognition. Here, we present how MD
simulation can revolutionize the way of design and screening of DNA
aptamers for targeting biomarkers related to oral diseases and oral
health monitoring. It demonstrates great potential to be utilized to
build a library of DNDA sequences for reliable detection of several
biomarkers of one specific disease, and as well provides a new
methodology of creating, designing, and applying of biosensors.





References:
[1] Hannig, G., Makrides, S. C., "Strategies for optimizing heterologous
protein expression in Escherichia coli", Trends Biotechnol. vol. 16, no.
2, pp. 54-60, 1998.
[2] Sorensen, H. P., Mortensen, K. K., "Advanced genetic strategies for
recombinant protein expression in Escherichia coli", J Biotechnol. vol.
115, no. 2, pp. 113-128, 2005.
[3] Langer, R., Tirrell, D. A., "Designing materials for biology and
medicine", Nature. vol. 428, no. 6982, pp. 487-492, 2004.
[4] Burg, K. J. L., Porter, S., Kellam, J. F., "Biomaterial developments for
bone tissue engineering", Biomaterials. vol. 21, no. 23, pp. 2347-2359,
2000.
[5] Ma, P. X., "Biomimetic materials for tissue engineering", Adv Drug
Deliver Rev. vol. 60, no. 2, pp. 184-198, 2008.
[6] Shin, H., Jo, S., Mikos, A. G., "Biomimetic materials for tissue
engineering", Biomaterials. vol. 24, no. 24, pp. 4353-4364, 2003.
[7] Langer, R., Vacanti, J. P., "Tissue Engineering", Science. vol. 260, no.
5110, pp. 920-926, 1993.
[8] Eisen, M. B., Brown, P. O., "DNA arrays for analysis of gene
expression", Cdna Preparation and Characterization. vol. 303, no., pp.
179-205, 1999.
[9] Zhu, H., Snyder, M., "Protein chip technology", Curr Opin Chem Biol.
vol. 7, no. 1, pp. 55-63, 2003.
[10] Ratner, B. D., Bryant, S. J., "Biomaterials: Where we have been and
where we are going", Annu Rev Biomed Eng. vol. 6, no., pp. 41-75,
2004.
[11] Stangel, K., et al., "A programmable intraocular CMOS pressure sensor
system implant", Ieee J Solid-St Circ. vol. 36, no. 7, pp. 1094-1100,
2001.
[12] Chin, C. D., Linder, V., Sia, S. K., "Commercialization of microfluidic
point-of-care diagnostic devices", Lab Chip. vol. 12, no. 12, pp. 2118-
2134, 2012.
[13] Zhang, W., Du, Y., Wang, M. L., "On-chip highly sensitive saliva
glucose sensing using multilayer films composed of single-walled
carbon nanotubes, gold nanoparticles, and glucose oxidase", Sensing and
Bio-Sensing Research. vol. 4, no. 0, pp. 96-102, 2015.
[14] Zhang, W., Du, Y., Wang, M. L., "Noninvasive glucose monitoring
using saliva nano-biosensor", Sensing and Bio-Sensing Research. vol. 4,
no. 0, pp. 23-29, 2015.
[15] Zhang, W. J., Wang, M. L., "DNA-functionalized single-walled carbon
nanotube-based sensor array for breath analysis", International Journal
of Electronics and Electronical Engineering. vol. 4, no. 2, pp. 177-180,
2016.
[16] Herr, A. E., et al., "Microfluidic immunoassays as rapid saliva-based
clinical diagnostics", Proceedings of the National Academy of Sciences
of the United States of America. vol. 104, no. 13, pp. 5268-5273, 2007.
[17] Santini, J. T., Cima, M. J., Langer, R., "A controlled-release microchip",
Nature. vol. 397, no. 6717, pp. 335-338, 1999.
[18] Yoshida, R., et al., "Maskless microfabrication of thermosensitive gels
using a microscope and application to a controlled release microchip",
Lab Chip. vol. 6, no. 10, pp. 1384-1386, 2006.
[19] Grayson, A. C. R., et al., "Multi-pulse drug delivery from a resorbable
polymeric microchip device", Nature Materials. vol. 2, no. 11, pp. 767-
772, 2003.
[20] Service, R. F., "Microchip arrays put DNA on the spot", Science. vol.
282, no. 5388, pp. 396-+, 1998.
[21] Figeys, D., Pinto, D., "Lab-on-a-chip: A revolution in biological and
medical sciences.", Analytical Chemistry. vol. 72, no. 9, pp. 330a-335a,
2000.
[22] ODonnellMaloney, M. J., Little, D. P., "Microfabrication and array
technologies for DNA sequencing and diagnostics", Genet Anal-Biomol
E. vol. 13, no. 6, pp. 151-157, 1996.
[23] Sanders, G. H. W., Manz, A., "Chip-based microsystems for genomic
and proteomic analysis", Trac-Trend Anal Chem. vol. 19, no. 6, pp. 364-
378, 2000.
[24] Weigl, B. H., Bardell, R. L., Cabrera, C. R., "Lab-on-a-chip for drug
development", Adv Drug Deliver Rev. vol. 55, no. 3, pp. 349-377, 2003.
[25] Andersson, H., van den Berg, A., "Microtechnologies and
nanotechnologies for single-cell analysis", Curr Opin Biotech. vol. 15,
no. 1, pp. 44-49, 2004.
[26] Watson, J. D., Crick, F. H. C., "Molecular Structure of Nucleic Acids: A
Structure for Deoxyribose Nucleic Acid", Nature. vol. 171, no. 4356, pp.
737-738, 1953. [27] Vanness, J., et al., "A Versatile Solid Support System for
Oligodeoxynucleotide Probe-Based Hybridization Assays", Nucleic
Acids Res. vol. 19, no. 12, pp. 3345-3350, 1991.
[28] Hvastkovs, E. G., Buttry, D. A., "Recent advances in electrochemical
DNA hybridization sensors", Analyst. vol. 135, no. 8, pp. 1817-1829,
2010.
[29] Rogers, K. R., Apostol, A., Madsen, S. J., Spencer, C. W., "Fiber optic
biosensor for detection of DNA damage", Anal Chim Acta. vol. 444, no.
1, pp. 51-60, 2001.
[30] Wang, J., et al., "Indicator-free electrochemical DNA hybridization
biosensor", Anal Chim Acta. vol. 375, no. 3, pp. 197-203, 1998.
[31] Ban, C. G., Chung, S. M., Park, D. S., Shim, Y. B., "Detection of
protein-DNA interaction with a DNA probe: distinction between singlestrand
and double-strand DNA-protein interaction", Nucleic Acids Res.
vol. 32, no. 13, pp., 2004.
[32] Leung, C. H., et al., "Luminescent detection of DNA-binding proteins",
Nucleic Acids Res. vol. 40, no. 3, pp. 941-955, 2012.
[33] Li, J., Lu, Y., "A highly sensitive and selective catalytic DNA biosensor
for lead ions", Journal of the American Chemical Society. vol. 122, no.
42, pp. 10466-10467, 2000.
[34] Zhang, Z., Hejesen, C., Kjelstrup, M. B., Birkedal, V., Gothelf, K. V.,
"A DNA-Mediated Homogeneous Binding Assay for Proteins and Small
Molecules", Journal of the American Chemical Society. vol. 136, no. 31,
pp. 11115-11120, 2014.
[35] Vo-Dinh, T., Cullum, B. M., Stokes, D. L., "Nanosensors and biochips:
frontiers in biomolecular diagnostics", Sensors and Actuators BChemical.
vol. 74, no. 1-3, pp. 2-11, 2001.
[36] Chen, X. F., et al., "Real-time detection of DNA interactions with longperiod
fiber-grating-based biosensor", Opt Lett. vol. 32, no. 17, pp.
2541-2543, 2007.
[37] Odenthal, K. J., Gooding, J. J., "An introduction to electrochemical
DNA biosensors", Analyst. vol. 132, no. 7, pp. 603-610, 2007.
[38] Wang, J., "Electrochemical biosensors: Towards point-of-care cancer
diagnostics", Biosens Bioelectron. vol. 21, no. 10, pp. 1887-1892, 2006.
[39] Kinsella, J. M., Ivanisevic, A., "Biosensing - Taking charge of
biomolecules", Nature Nanotechnology. vol. 2, no. 10, pp. 596-597,
2007.
[40] Mannelli, F., et al., "Direct immobilisation of DNA probes for the
development of affinity biosensors", Bioelectrochemistry. vol. 66, no. 1-
2, pp. 129-138, 2005.
[41] Garcia-Martinez, G., et al., "Development of a Mass Sensitive Quartz
Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz
Electronic Oscillator Circuit", Sensors. vol. 11, no. 8, pp. 7656-7664,
2011.
[42] Cooper, C. S., "Applications of microarray technology in breast cancer
research", Breast Cancer Res. vol. 3, no. 3, pp. 158-175, 2001.
[43] Triche, T. J., Schofield, D., Buckley, J., "DNA microarrays in pediatric
cancer", Cancer J. vol. 7, no. 1, pp. 2-15, 2001.
[44] Grouse, L. H., Munson, P. J., Nelson, P. S., "Sequence databases and
microarrays as tools for identifying prostate cancer biomarkers",
Urology. vol. 57, no. 4A, pp. 154-159, 2001.
[45] Schena, M., "Genome analysis with gene expression microarrays",
Bioessays. vol. 18, no. 5, pp. 427-431, 1996.
[46] Schena, M., et al., "Microarrays: biotechnology's discovery platform for
functional genomics", Trends Biotechnol. vol. 16, no. 7, pp. 301-306,
1998.
[47] Service, R. F., "Microchip Arrays Put DNA on the Spot", Science. vol.
282, no. 5388, pp. 396-399, 1998.
[48] Barry CE, r., M, W., R, L., GK, S., "DNA microarrays and
combinatorial chemical libraries: tools for the drug", Int J Tuberc Lung
Dis. vol. 12, no. 2, pp. 189-93, 2000.
[49] Staii, C., Johnson, A. T., "DNA-decorated carbon nanotubes for
chemical sensing", Nano Lett. vol. 5, no. 9, pp. 1774-1778, 2005.
[50] Kang, Z., et al., "Single-Stranded DNA Functionalized Single-Walled
Carbon Nanotubes for Microbiosensors via Layer-by-Layer Electrostatic
Self-Assembly", Acs Appl Mater Inter. vol. 6, no. 6, pp. 3784-3789,
2014.
[51] Dwyer, C., et al., "DNA-functionalized single-walled carbon
nanotubes", Nanotechnology. vol. 13, no. 5, pp. 601-604, 2002.
[52] Pinheiro, A. V., Han, D., Shih, W. M., Yan, H., "Challenges and
opportunities for structural DNA nanotechnology", Nat Nano. vol. 6, no.
12, pp. 763-772, 2011.
[53] Linko, V., Dietz, H., "The enabled state of DNA nanotechnology", Curr
Opin Biotech. vol. 24, no. 4, pp. 555-561, 2013.
[54] Noy, A., Artyukhin, A. B., Misra, N., "Bionanoelectronics with 1D
materials", Mater Today. vol. 12, no. 9, pp. 22-31, 2009.
[55] Zhang, W., Wang, M. L., Khalili, S., Cranford, S. W., "Materiomics for
oral disease diagnostics and personal health monitoring:designer
biomaterials for the next generation biomarkers", OMICS: A Journal of
Integrative Biology. vol. to be published, no. Oral Medicine Biomarkers:
Towards One Health, pp., 2015.
[56] Zhang, W. J., Wang, M. L., Cranford, S. W., "Ranking of Molecular
Biomarker Interaction with Targeted DNA Nucleobases via Full
Atomistic Molecular Dynamics", Sci Rep-Uk. vol. to be published, no.,
pp., 2015.
[57] Aravind, S. S. J., Ramaprabhu, S., "Noble metal dispersed multiwalled
carbon nanotubes immobilized ss-DNA for selective detection of
dopamine", Sensors and Actuators B-Chemical. vol. 155, no. 2, pp. 679-
686, 2011.
[58] Johnson, A. T. C., Khamis, S. M., Preti, G., Kwak, J., Gelperin, A.,
"DNA-Coated Nanosensors for Breath Analysis", Ieee Sens J. vol. 10,
no. 1, pp. 159-166, 2010.
[59] Babkina, S. S., Ulakhovich, N. A., Zyavkina, Y. I., "Amperometric
DNA biosensor for the determination of auto-antibodies using DNA
interaction with Pt(II) complex", Anal Chim Acta. vol. 502, no. 1, pp.
23-30, 2004.
[60] Evtugyn, G. A., Goldfarb, O. E., Budnikov, H. C., Ivanov, A. N., Vinter,
V. G., "Amperometric DNA-peroxidase sensor for the detection of
pharmaceutical preparations", Sensors. vol. 5, no. 6-10, pp. 364-376,
2005.
[61] Drummond, T. G., Hill, M. G., Barton, J. K., "Electrochemical DNA
sensors", Nat. Biotechnol. vol. 21, no. 10, pp. 1192-1199, 2003.
[62] Liu, Y., et al. "Single chip Nanotube sensors for chemical agent
monitoring", 16th International Solid-State Sensors, Actuators and
Microsystems Conference (TRANSDUCERS), Beijing, China, 5-9 June
2011; Beijing, China, 2011; pp. 795-798.
[63] Greiter, M. B., et al., "Differences in Exhaled Gas Profiles Between
Patients with Type 2 Diabetes and Healthy Controls", Diabetes Technol
The. vol. 12, no. 6, pp. 455-463, 2010.
[64] Miekisch, W., Schubert, J. K., Noeldge-Schomburg, G. F. E.,
"Diagnostic potential of breath analysis - focus on volatile organic
compounds", Clin Chim Acta. vol. 347, no. 1-2, pp. 25-39, 2004.
[65] Minh, T. D. C., et al., "Noninvasive measurement of plasma glucose
from exhaled breath in healthy and type 1 diabetic subjects", Am J
Physiol-Endoc M. vol. 300, no. 6, pp. E1166-E1175, 2011.
[66] Mj, H., Ba, K., Ga, W. S., "Acetone in the breath: a study of acetone
exhalation in diabetic and nondiabetic human subjects", Diabetes. vol. 1,
no. 3, pp. 188-93, 1952.
[67] Sulway, M. J., Malins, J. M., "Acetone in Diabetic Ketoacidosis", The
Lancet. vol. 296, no. 7676, pp. 736-740, 1970.
[68] Plimpton, S., "Fast Parallel Algorithms for Short-Range Molecular-
Dynamics", J Comput Phys. vol. 117, no. 1, pp. 1-19, 1995.
[69] Laboratories, S. N. LAMMPS Molecular Dynamics Simulator.
http://lammps.sandia.gov/.
[70] Deuflhard, P., et al., Computational molecular dynamics : challenges,
methods, ideas : proceedings of the 2nd International Symposium on
Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997.
Springer Berlin Heidelberg: 1999.
[71] Molnar, F., Ben-Nun, M., Martinez, T. J., Schulten, K.,
"Characterization of a conical intersection between the ground and first
excited state for a retinal analog", J Mol Struc-Theochem. vol. 506, no.,
pp. 169-178, 2000.
[72] Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K.,
"Molecular dynamics study of unbinding of the avidin-biotin complex",
Biophys J. vol. 72, no. 4, pp. 1568-1581, 1997.
[73] Hornak, V., Dvorsky, R., Sturdik, E., "Receptor-ligand interaction and
molecular modelling", Gen Physiol Biophys. vol. 18, no. 3, pp. 231-248,
1999.