Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF

The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.




References:
[1] M. C. Chang, "Harnessing energy from plant biomass," Curr. Opin.
Chem. Biol., vol. 11, pp. 677-684, 2007.
[2] D. Damisa, J. B. Ameh, and V. J. Umoh, "Effect of chemical
pretreatment of some lignocellulosic wastes on the recovery of cellulase
from Aspergillus niger AH3 mutant," Afr. J. Biotechnol., vol. 7, no. 14,
pp. 2444-2450, 2008.
[3] L. R. Lynd, R. T. Elander, and C. E. Wyman, "Likely features and costs
of mature biomass ethanol technology," Appl. Biochem. Biotechnol., vol.
57-58, pp. 741-761, 1996.
[4] M. Raimbault, "General and microbiological aspects of solid substrate
fermentation," Elect. J. Biotechnol., vol. 27, pp. 498-503, 1998.
[5] K. H. Brijwani, S. Oberoi, and P. V. Vadlani, "Production of a
cellulolytic enzyme system in mixed-culture solid-state fermentation of
soybean hulls supplemented with wheat bran," Proc. Biochem., vol. 45,
pp. 120-128, 2010.
[6] L. R. Lynd, C. E. Wyman, and T. U. Gerngross, "Biocommodity
engineering," Biotechnol. Prog., vol. 15 pp. 777-793, 1999.
[7] R. H. Marchessault, and P. R. Sundararajan, "Cellulose, In G. O.
Aspinall (ed.), the polysaccharides," vol. 2, Academic Press, Inc., New
York, 1993, pp. 11-95.
[8] R. M. J. Brown, and I. M. Saxena, "Cellulose biosynthesis: a model for
understanding the assembly of biopolymers," Plant Physiol. Biochem.,
vol. 38, pp. 57-67, 2000.
[9] M. Koyama, W. Helbert, T. Imai, J. Sugiyama, and B. Henrissat,
"Parallel-up structure evidences the molecular directionality during
biosynthesis of bacterial cellulose," Proc. Nat. Acad. Sci. USA., Vol. 94,
pp. 9091-9095, 1997.
[10] L. M. J. Kroon-Batenburg, and J. Kroon, "The crystal and molecular
structures of cellulose I and II," Glycoconj. J. vol. 14, pp. 677-690,
1997.
[11] Y. W. Chung, H. Yi-Ru, C. C. Ng, H. Chan, H. T. Lin, T. Wen-Sheng,
and Y. T. Shyu, "Purification and characterization of a novel halostable
cellulase from Salinivibrio sp. strain NTU-05," Enz. Microb. Technol.,
Vol. 44, no. (6-7), pp. 373-379, 2009.
[12] M. Dashtban, H. Schraft, and W. Qin, "Fungal bioconversion of
lignocellulosic residues; opportunities and perspectives," Int. J. Biol.
Sci., vol. 5, no. 6, pp. 578-95, 2009.
[13] R. R. Singhania, R. K. Sukumaran, A. K. Patel, C. Larroche, and A.
Pandey, "Advancement and comparative profiles in the production
technologies using solid-state and submerged fermentation for microbial
cellulases," Enz. Microb. Technol., vol. 46, pp. 541-549, 2010.
[14] C. S. Farinas, M. M. Loyo, A. B. Junior, P. W. Tardioli, V. B. Neto, and
S. Couri, "Finding stable cellulase and xylanase: evaluation of the
synergistic effect of pH and temperature," New Biotechnol., vol. 00, no.
00, pp. 1-6, 2010.
[15] Z. Wen, W. Liao, and S. Chen, "Production of cellulase/b-glucosidase
by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis
on dairy manure," Proc. Biochem., vol. 40, pp. 3087-94, 2005.
[16] B. C. Stockton, D. J. Mitchell, K. Grohmann, and M. E. Himmel,
"Optimum β-D glucosidase supplementation of cellulase for efficient
conversion of cellulose to glucose. Biotechnol. Lett., vol. 13, pp. 57-62,
1991.
[17] K. Reczey, Z. Szengyel, R. Eklund, and G. Zacchi, "Cellulase
production by T. reesei," Bioresour. Technol., vol. 57, pp. 25-30, 1996.
[18] J. P. Smits, A. Rinzema, J. Tramper, H. M. van Sonsbeek, and W. Knol,
"Solid state fermentation of wheat bran by Trichoderma reesei QM
9414: substrate compositional changes, C balance enzyme production,
growth and kinetics," Appl. Microbol. Biotechnol., vol. 46, pp. 489-96,
1996.
[19] U. Holker, M. Hofer, J. Lenz, "Biotechnological advantages of
laboratory scale solid state fermentation with fungi," Appl. Microbiol.
Biotechnol., Vol. 64, pp. 175-86, 2004.
[20] Y. Han, and H. Chen, "Synergism between corn stover protein and
cellulase," Enz. Microb. Technol., vol. 41, pp. 638-645, 2007.
[21] Y. Han, and H. Chen, "Characterization of beta-glucosidase from corn
stover and its application in simultaneous saccharification and
fermentation," Bioresour. Technol., vol. 99, pp. 6081-6087, 2008.
[22] C. Birsan, P. Johnson, M. Joshi, A. MacLeod, L. McIntosh, V. Monem,
M. Nitz, D. R. Rose, D. Tull, W. W. Wakarchuck, Q. Wang, R. A. J.
Warren, A. White and S. G. Withers, (1998) Mechanisms of cellulases
and xylanases," Biochem. Soc. Trans., vol. 26, pp. 156-160, 1998.
[23] S. G. Withers, "Mechanisms of glycosyl transferases and hydrolyses,"
Carbohydr. Polym., vol. 44, pp. 325-337, 2001.
[24] S. S. Dhillon, R. K. Gill, S. S. Gill, and M. Singh, "Studies on the
utilization of citrus peel for pectinase production using fungus
Aspergillus niger," Intern. J. Environ. Stud., vol. 61, no. 2, pp. 199-210,
2004.
[25] H. N. Ariffin, M. S. Abdullah, U. Kalsom, Y. Shira, and M. A. Hassan,
"Production and Characterisation of Cellulase by Bacillus Pumilus Eb3,"
Int. J. Eng. Technol., vol. 3, pp. 47-53, 2006.
[26] M. Dubois, K. A. Gibes, J. K. Hamilton, P. A. Rebers, and F. Smith,
"Colorimetric method for determination of sugars and related
substances," Anal. Chem., vol. 28, pp. 350-353, 1956.
[27] G. L. Miller, "Use of DNS reagent for the measurement of reducing
sugar," Anal. Chem., vol. 31, pp. 426-428, 1959.
[28] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, "Protein
measurement with folin phenol reagent," J. Biol. Chem., vol. 193, pp.
265-275, 1951.
[29] C. Krishna, and M. Chandrasekaran, "Banana waste as substrate for ╬▒-
amylase production by Bacillus subtilis (CBTK-106) under solid state
fermentation," Appl. Microbiol. Biotechnol., vol. 46, pp. 106-111, 1996.
[30] T. K. Ghose, "Measurement of cellulase activities," Pur. Appl. Chem.,
vol. 59, pp. 257-268, 1987.
[31] R. G. D. Steel, and J. H. Torrie, "Principal and Procedures of Statistics
Mc.Gra. Hill. Book co.inc.2nd New York (USA), 1982.
[32] O. I. A. Oluremi, I. A. Andrew, and J. Ngi, "Evaluation of the nutritive
potential of the peels of some citrus fruit varieties as fedingstuffs in
livestock production," Pak. J. Nutrit., vol. 6, no. 6, pp. 653-656, 2007.
[33] M. R. Rowell, "Opportunities for lignocellulosic materials and
composites. Emerging technologies for material and chemicals from
biomass: Proceedings of symposium. Washington, DC: Americ. Chem.
Soc. Chap. 2, 1992, pp. 26-31.
[34] P. McKendry, "Energy production from biomass: overview of biomass,"
Bioresour. Technol., vol. 83, pp. 37-43, 2002.
[35] S. Prassad, A. Singh, and H.C. Joshi, "Ethanol as an alternative fuel
from agricultural, industrial and urban residues," Resour. Conserv.
Recycl., Vol. 50, pp. 1-39, 2007.
[36] F. Carvalheiro, , T. Silva-Fernandes, L. C. Duarte, and F. M. Gírio,
"Wheat straw autohydrolysis: process optimization and products
characterization," Appl. Biochem. Biotechnol., vol. 153, no. 1-3, pp. 84-
93, 2009.
[37] M. Pedersen, and A. S. Meyer, "Lignocellulose pretreatment severity
relating pH to biomatrix opening," New Biotechnol., doi: 10. 1016/j.nbt.
2010. 05.003.
[38] M. U. Dahoot, and M. H. Noomrio, "Microbial production of cellulases
by Aspergillus fumigatus using wheat straw as a carbon source," J. isl.
Acad. sci., vol. 9, no. 4, pp. 119-124, 1996.
[39] H. Knappert, A. Singh, and H. C. Joshi, "Partial acid hydrolysis of
poplar wood as a pretreatment for enzymatic saccharification," Ann. Rev.
Ene. Environ., vol. 25, pp. 199-244, 1981.
[40] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, and M.
Holtzapple, "Features of promising technologies for pretreatment of
lignocellulosic biomass," Bioresour. Technol., vol. 96, pp. 673-86,
2005.
[41] M. S. Chandra, B. R. Reddy, and Y. L. Choi, "Optimization of
Extraction of Fpase from the Fermented Bran of Aspergillus Niger in
Solid State Fermentation," J. Appl. Biol. Chem., vol. 51, no. 4, pp. 155-
159, 2008.
[42] S. Malathi, and R. Chakraborty, "Production of alkaline protease by a
new Aspergillus flavus isolate under solid-substrate fermentation
conditions for use as a depilation agent," Appl. Environ. Microbiol., Vol.
57, pp. 712-716, 1991.
[43] S. A. Ahmed, "Optimization of Production and Extraction Parameters of
Bacillus megaterium Levansucrase Using Solid-state Fermentation," J.
Appl. Sci. Res., vol. 4, no. 10, pp. 1199-1204, 2008.
[44] R. Da-Silva, E. S. Lago, C. W. Merheb, M. M. Macchion, Y. K. Park,
and E. Gomes, "Production of xylanase and CMCase on solid state
fermentation in different residues by Thermoascus aurantiacus miehe,"
Brazil. J. Microbiol., vol. 36, pp. 235-241, 2005.
[45] K. S. M. S. Raghavarao, T. V. Ranganathan, and N. G. Karanth, "Some
engineering aspects of solid-state fermentation," Biochem. Eng. J., vol.
13, pp. 127-135, 2003.
[46] M. Regina, F. Broetto, G. Giovannozzi-Sermanni, R. Marabotini, and C.
Peranni, "Influence of stationary and bioreactor cultivation on Lentinula
edodes (Berk) Pegler lignocellulolytic activity," Braz. Arch. Biol.
Technol., vol. 51, pp. 223-233, 2008.
[47] J. Liu, and J. Yang, "Cellulase Production by Trichoderma koningii
AS3.4262 in Solid-State Fermentation Using Lignocellulosic Waste
from the Vinegar Industry," Food Technol. Biotechnol., vol. 45, no. 4,
pp. 420-425, 2007.
[48] R. R. Singhania, R. K. Sukumaran, and A. Pandey, "Improved Cellulase
Production by Trichoderma reesei RUT C30 under SSF through Process
Optimization," Appl. Biochem. Biotechnol., vol. 142, no. 1, pp. 60-70,
2007.
[49] Y. Sun, and J. Cheng, "Hydrolysis of lignocellulosic material for ethanol
production: a review," Bioresour. Technol., vol. 83, pp. 1-11, 2002.
[50] S. W. Cheung, and B. C. Anderson, "Laboratory investigation of ethanol
production from municipal primary waste water," Bioresour. Technol.,
vol. 59, pp. 81-96, 1997.
[51] X. J. B. Wang, and Y.Lian, "Optimization of Multienzyme production
by two mixed strains in solid-state fermentation," Appl. Microbiol.
Biotechnol., vol. 73, pp. 533-540, 2006.
[52] X. Fang, Y. Shen, J. Zhao, X. Bao, and Y. Qu, "Status and prospect of
lignocellulosic bioethanol production in China," Bioresour. Technol.,
vol. 101, pp. 4814-4819, 2010.
[53] G. Narasimh, "Nutrient effects on production of cellulytic enzymes by
Aspergillus niger," Afr. J. Biotechnol., vol. 5, pp. 472-476, 2006.
[54] M. Sohail, R. Siddiqi, A. Ahmad, and S. A. Khan, "Cellulase production
from Aspergillus niger MS82: effect of pH and temperature," New
Biotechnol., vol. 25, no. 6, pp. 437-441, 2009.
[55] S. Ahmed, A. Bashir, H. Saleem, M. Saadia, and A. Jamil, "Production
and purification of cellulose degrading Enzymes from a filamentous
fungus Trichoderma harzianum," Pak. J. Bot., vol. 41, no. 3, pp. 1411-
1419, 2009.
[56] I. A. Rodriguez, C. P. Escobedo, M. G. Z. Paramo, E. L. Romero, and H.
C. Camacho, "Degradation of cellulose by the bean-pathogenic fungus
Colletotrichum lindemuthianum. Produciton of extracellular cellulolytic
enzymes by cellouse induction," Antonie van Leeuwenhock., vol. 87, pp.
301-310, 2005.
[57] A. P. Niranjane, P. Madhou, and T. W. Stevenson, (2007) "The effect of
carbohydrate carbon sources on the production of cellulase by Phlebia
gigantean," Enz. Microb. Technol., vol. 40, pp. 1464-1468, 2007.
[58] I. Haq, S. Khurshid, H. Ali, M. Ashraf, A. Qadeer, and M. I. Rajoka,
"Mutation of Aspergillus niger for hyper production of citric acid from
black strap molasses," W. J. Microbiol. Biol. vol.17, pp. 35-37, 2001.
[59] H. Xiong, N.von. Weymarn, M. Leisola, and O. Turunen, "Influence of
pH on the production of xylanase by Trichoderma reesei Rut C-30,"
Proc. Biochem., vol. 39, no. 6, pp. 729-733, 2004.
[60] S. Pushalkar, K. K. Rao, and K. Menon, "Production of ß-glucosidase by
Aspergillus terrus," Curr. Microbiol., vol. 30, pp. 255-258, 1995.
[61] A. J. Sami, M. Awais, and A. R. Shakoori (2008). "Preliminary studies
on the production of endo-1, 4-β-Dglucanases activity produced by
Enterobacter cloacae," Afri. J. Biotechnol., vol. 7, no. 9, pp. 1318-1322,
2008.
[62] P. F. Omojasola, and O. P. Jilani, (2009) "Cellulase production by
Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae
cultured on plantain peel," Res. J. Microbiol., vol. 4, no. 2, pp. 67-74,
2009.
[63] I. Gomes, J. Gomes, W. Steiner, and H. Esterbauer, "Production of
cellulase and xylanase by a wild strain of Trichoderma viride," Appl
Microbiol Biotechnol., vol. 36, pp. 701-707, 1991.
[64] P. F. Omojasola, O. P. Jilani, and S. A. Ibyami, "Cellulase production by
some fingi cultured on pine apple waste," Nat. Sci., vol. 6, no. 2, pp. 64-
79, 2008.
[65] M. Fadel, "Production physiology of cellulose and ß-glucosidase
enzymes of Aspergillus niger grown under solid state fermentation
conditions," Onlin. J. Biol. Sci., vol. 1, no. 5, pp. 401-411, 2000.
[66] D. K. Sharma, M. Tiwari, and B. K. Behere, "Solid state fermentation of
new substrates for production of cellulose and other biopolymer
hydrolyzing enzyme," Appl. Biochem. Biotechnol., vol. 15, pp. 495-500,
1995.
[67] P. K. A. Muniswaran, and N. C. L.Charyulu, "Solid state fermentation of
coconut cario pith for cellulase production," Enz. Microb. Technol., vol.
16, pp. 436-446, 1994.