Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

The growing popularity of solid state thermoelectric
devices in cooling applications has sparked an increasing diversity of
thermoelectric coolers (TECs) on the market, commonly known as
“Peltier modules”. They can also be used as generators, converting
a temperature difference into electric power, and opportunities are
plentiful to make use of these devices as thermoelectric generators
(TEGs) to supply energy to low power, autonomous embedded
electronic applications. Their adoption as energy harvesters in this
new domain of usage is obstructed by the complex thermoelectric
models commonly associated with TEGs. Low cost TECs for the
consumer market lack the required parameters to use the models
because they are not intended for this mode of operation, thereby
urging an alternative method to obtain electric power estimations
in specific operating conditions. The design of the test setup
implemented in this paper is specifically targeted at benchmarking
commercial, off-the-shelf TECs for use as energy harvesters in
domestic environments: applications with limited temperature
differences and space available. The usefulness is demonstrated by
testing and comparing single and multi stage TECs with different
sizes. The effect of a boost converter stage on the thermoelectric
end-to-end efficiency is also discussed.




References:
[1] Ahiska, R., Mamur, H., A test system and supervisory control and
data acquisition application with programmable logic controller for
thermoelectric generators, in Int. Conf. Renewable Energy (IREC), pp.
15 - 22, doi:10.1016/j.enconman.2012.05.010, 2012.
[2] Amatya, R., Ram, R. J., Solar Thermoelectric Generator for Micropower
Applications, in J. of Electronic Materials, vol. 39, no. 9, pp. 1735 - 1740,
doi:10.1007/s11664-010-1190-8, ISSN 1543-186X, 2010.
[3] Brown, S. R., Kauzlarich, S. M., Gascoin, F. et al., Yb14MnSb11: New
High Efficiency Thermoelectric Material for Power Generation, in Chem.
Mater., vol. 18, no. 7, pp. 1873 - 1877, doi:10.1021/cm060261t, 2006.
[4] Camargo, J. R., Costa de Oliveira, M. C., Principles of Direct
Thermoelectric Conversion, Heat Analysis and Thermodynamic Effects,
InTech, ISBN 978-953-307-585-3, doi:10.5772/20619, 2011.
[5] Cao, Z., Koukharenko, E., Tudor, M. J. et al., Screen printed flexible
Bi2Te3-Sb2Te3 based thermoelectric generator, in J. Phys.: Conf. Ser.,
vol. 476, doi:10.1088/1742-6596/476/1/012031, 2013.
[6] Carmo, J. P., Antunes, J., Silva, M. F. et al., Characterization
of thermoelectric generators by measuring the load-dependence
behavior, in Measurement, vol. 44, no. 10, pp. 2194 - 2199,
doi:10.1016/j.measurement.2011.07.015, 2011.
[7] Chen, J., Yan, Z., Wu, L., The influence of Thomson effect on the
maximum power output and maximum efficiency of a thermoelectric
generator, in J. Appl. Phys., vol. 79, no. 11, pp. 8823 - 8828,
doi:10.1063/1.362507, 1996.
[8] Dughaish, Z. H., Lead telluride as a thermoelectric material for
thermoelectric power generation, in Physica B: Condensed Matter, vol.
322, no. 1-2, pp. 205 - 223, doi:10.1016/S0921-4526(02)01187-0, 2002.
[9] Dziurdzia, P., Modeling and Simulation of Thermoelectric Energy
Harvesting Processes, Sustainable Energy Harvesting Technologies
- Past, Present and Future, InTech, ISBN 978-953-307-438-2,
doi:10.5772/28530, 2011.
[10] Eakburanawat, J., Boonyaroonate, I., Development of a thermoelectric
battery-charger with microcontroller-based maximum power point
tracking technique, in Applied Energy, vol. 83, no. 7, pp. 687 - 704,
doi:10.1016/j.apenergy.2005.06.004, 2006.
[11] Everredtronics Ltd., Thermoelectric Module:
TEC2-19006 Specifications, datasheet, Rev. 1.01, online:
http://www.everredtronics.com/files/TEC2-19006.pdf, 2015.
[12] Faraji, A. Y., Akbarzadeh, A., Design of a Compct, Protable Test
System for Thermoelectric Power Generator Modules, in J. Electronic
Materials, vol. 42, no. 7, pp. 1535 - 1541, ISSN 0361-5235,
doi:10.1007/s11664-012-2314-0, 2013.
[13] Funahashi, R., Shikano, M., Bi2Sr2Co2Oy whiskers with high
thermoelectric figure of merit, in Appl. Phys. Lett., vol. 81, pp. 1459
- 1461, doi:10.1063/1.1502190, 2002.
[14] Freunek, M., M¨uller, M., Ungan, T. et al., New Physical Model for
Thermoelectric Generators, in J. of Electronic Materials, vol. 38, no. 7,
pp. 1214 - 1220, doi:10.1007/s11664-009-0665-y, 2009.
[15] Ghamaty, S., Bass, J. C., Elsner, N. B., Quantum well thermoelectric
devices and applications, in 22 Int. Conf. ICT Thermoelectrics, pp. 563
- 566, ISBN 0-7803-8301-X, doi:10.1109/ICT.2003.1287575, 2003.
[16] Goldsmid, H. J., Bismuth Telluride and its Alloys as Materials for
Thermoelectric Generation, in Materials, vol. 7, no. 4, pp. 2577- 2592,
doi:10.3390/ma7042577, 2014.
[17] Granger, P., Parvulescu, V. I., Kaliaguine, S. et al., Perovskites and
Related Mixed Oxides: Concepts and Applications, John Wiley & Sons,
ISBN 978-3-527-33763-7, 2016.
[18] Hebei I.T. Co., Ltd., TEC1-12706 Thermoelectric
Cooler, datasheet, Rev. 2.03, online:
http://www.hebeiltd.com.cn/peltier.datasheet/TEC1-12706.pdf, 2012.
[19] Heremans, J. P., Jovovic, V., Toberer, E. S. et al., Enhancement
of Thermoelectric Efficiency in PbTe by Distortion of the Electronic
Density of States, Science, vol. 321, no. 5888, pp. 554 - 557,
10.1126/science.1159725, 2008.
[20] Hu, L.-P., Zhu, T.-J., Wang, Y.-G. et al., Shifting up the optimum figure
of merit of p-type bismuth telluride-based thermoelectric materials for
power generation by suppressing intrinsic conduction, in NPGA Asia
Materials, vol. 6, no. 2, e88, doi:10.1038/am.2013.86, 2014.
[21] Hsu, K. F., Loo, S., Guo, F. et al., Cubic AgPbmSbTe2+m: Bulk
Thermoelectric Materials with High Figure of Merit, Science, vol. 303,
no. 5659, pp. 818 - 821, doi:10.1126/science.1092963, 2004.
[22] Huang, M.-J., Yen, R.-H., Wang, A.-B., The influence of the
Thomson effect on the performance of a thermoelectric cooler, in
Int. J. of Heat and Mass Transfer, vol. 48, no. 2, pp. 413 - 418,
doi:10.1016/j.ijheatmasstransfer.2004.05.040, 2005.
[23] Kim, S., Cho, S., Kim, N. et al., A maximum power point
tracking circuit of thermoelectric generators without digital controllers,
in IEICE Electronics Express, vol. 7, no. 10, pp. 1539 - 1545,
doi:10.1587/elex.7.1539, 2010.
[24] Kristiansen, N. R., Nielsen, H. K., Potential for Usage of Thermoelectric
Generators on Ships, in J. Electronic Materials, vol. 39, no. 9, pp. 1746
- 1749, ISSN 0361-5235, doi:10.1007/s11664-010-1189-1, 2010.
[25] Laird, I., Lovatt, H., Savvides, N. et al., Comparative study of maximum
power point tracking algorithms for thermoelectric generators, in Power
Engineering Conf. (AUPEC ’08), pp. 1 - 6, ISBN 978-0-7334-2715-2,
2008.
[26] Manikandan, S., Kaushik, S. C., Thermodynamic studies and maximum
power point tracking in thermoelectric generator-thermoelectric
cooler combined system, in Cryogenics, vol. 67, pp. 52 - 62,
doi:10.1016/j.cryogenics.2015.01.008, 2015.
[27] Massaguer, E., Massaguer, A., Montoro, J. et al., Modeling analysis of
longitudinal thermoelectric energy harvester in low temperature waste
heat recovery applications, in Applied Energy, vol. 140, pp. 184 - 195,
doi:10.1016/j.apenergy.2014.12.005, 2015.
[28] Melcor Corporation, CP2-127-06 Thermoelectric
Cooler, datasheet, Rev. 1.01, online:
http://pdf.datasheetarchive.com/indexerfiles/Datasheets-UD3/DSAUD00
46559.pdf, 2013.
[29] Montecucco, A., Buckle, J., Siviter, J. et al., A New Test Rig for Accurate
Nonparametric Measurement and Characterziation of Thermoelectric
Generators, in J. Electronic Materials, vol. 42, no. 7, pp. 1966 - 1973,
ISSN 0361-5235, doi:10.1007/s11664-013-2484-4, 2013.
[30] Montecucco, A., Knox, A. R., Maximum Power Point Tracking
Converter Based on the Open-Circuit Voltage Method for Thermoelectric Generators, in IEEE Transactions on Power Electronics, vol. 30, no. 2,
pp. 828 - 839, ISSN 0885-8993, doi:10.1109/TPEL.2014.2313294, 2014.
[31] Muller, E., Bruch, J. U., Schilz, J., TE generator test facility for low
resistance single elements, in Proc. 17 Int. Conf. Thermoelectrics (ICT
98), pp. 441 - 444, ISBN 0-7803-4907-5, doi:10.1109/ICT.1998.740413,
1998.
[32] Niu, X., Yu, J., Wang, S., Experimental study on low-temperature waste
heat thermoelectric generator, in J. Power Sources, vol. 188, no. 2, pp.
621 - 626, doi:10.1016/j.jpowsour.2008.12.067, 2009.
[33] Pean, R., Doluweera, G., Platonova, I., Solid state lighting for the
developing world: the only solution, in Proc. SPIE 5941, 5 Int. Conf.
Solid State Lighting, doi:10.1117/12.639718, 2005.
[34] Reddy, B. R., Body Heat Powered Flashlight Using LTC3108, in Int.
J. of Engineering Research and Applications, vol. 4, no. 8, pp. 94 - 97,
ISSN 2248-9622, 2014.
[35] Rossi, M., Rizzon, L., Fait, M., Applications in Electronics
Pervading Industry, Environment and Society: Self-powered Active
Cooling System for High Performance Processors, Springer International
Publishing, vol. 351, pp. 25 - 33, ISBN 978-3-319-20226-6,
doi:10.1007/978-3-319-20227-3 4, 2015.
[36] Salerno, D., Ultralow voltage energy harvester uses thermoelectric
generator for battery-free wireless sensors, in J. Analog Innovation, vol.
20, no. 3, 2010.
[37] Shi, Y., Zhu, Z., Deng, Y. et al., A real-sized three-dimensional numerical
model of thermoelectric generators at a given thermal input and matched
load resistance, in Energy Conversion and Management, vol. 101, pp. 713
- 720, doi:10.1016/j.enconman.2015.06.020, 2015.
[38] Snyder, G. J., Ursell, T. S., Thermoelectric Efficiency and Compatibility,
in Phys. Rev. Lett., vol. 91, no. 14, doi:10.1103/PhysRevLett.91.148301,
2003.
[39] Strasser, M., Aigner, R., Franosch, M. et al., Miniaturized thermoelectric
generators based on poly-Si and poly-SiGe surface micromachining,
in Sensors and Actuators A: Physical, vol. 97 - 98, pp. 535 - 542,
doi:10.1016/S0924-4247(01)00815-9, 2002.
[40] Tan, J., Kalantar-zadeh, K., Wlodarski, W. et al., Thermoelectric
properties of bismuth telluride thin films deposited by radio frequency
magnetron sputtering, in Proc. SPIE 5836, Smart Sensors, Actuators, and
MEMS II, 711, doi:10.1117/12.609819, 2005.
[41] Tritt, T. M., Subramanian, M. A., Thermoelectric Materials, Phenomena,
and Applications: A Bird’s Eye View, in MRS Bulletin, vol. 31, no. 3,
pp. 188 - 198, doi:10.1557/mrs2006.44, 2006.
[42] Van Belle, D., Ontwikkeling vna een modulair testopstelling voor
onderzoek van laag vermogen indoor fotovolta¨ısche cellen, Master thesis,
unpublished, Vrije Universiteit Brussel, Belgium, 2014.
[43] Van Belle, E., Integrated low-cost sensorless BLDC motor controller
using the BEMF on an FPGA, Master thesis, unpublished, Vrije
Universiteit Brussel, Belgium, 2015.
[44] Verbelen, Y., Braeken, A., Touhafi, A., Parametrization of Ambient
Energy Harvesters for Complementary Balanced Electronic Applications,
in Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87631U,
doi:10.1117/12.2018490, 2013.
[45] Verbelen, Y., Braeken, A., Touhafi, A., Towards a complementary
balanced energy harvesting solution for low power embedded
systems, in Microsystem Technologies, vol. 20, no. 4, pp 1007-1021,
doi:10.1007/s00542-014-2103-1, 2014.
[46] Verbelen, Y., Touhafi, A., Resource Considerations for Durable Large
Scale Renewable Energy Harvesting Applications, in Proc. Int. Conf.
Renewable Energy Research and Applications (ICRERA), pp. 401 - 406,
doi:10.1109/ICRERA.2013.6749788, 2013.
[47] Ware, R. M., McNeill, D. J., Iron disilicide as a thermoelectric
generator material, in Proc. IEEE, vol. 111, no. 1, pp. 178 - 182,
doi:10.1049/piee.1964.0029, 1964.
[48] White, M. A., Colenbrander, K., Ronald, O. et al., Generators that won’t
wear out, in Mech. Eng., vol. 118, no. 2, pp. 92 - 96, 1996.
[49] Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A. et al. Highly effective
Mg2Si1−xSnx thermoelectrics, in Phys. Rev. B., vol. 74, no. 4,
doi:10.1103/PhysRevB.74.045207, 2005.
[50] Zou, H., Rowe, D. M., Min, G., Growth of p- and n-type bismuth
telluride thin films by co-evaporation, in J. Crystal Growth, vol. 222,
no. 1 - 2, pp. 82 - 87, doi:10.1016/S0022-0248(00)00922-2, 2001