Active Disturbance Rejection Control for Wind System Based On a DFIG

This paper proposes the study of a robust control of
the doubly fed induction generator (DFIG) used in a wind energy
production. The proposed control is based on the linear active
disturbance rejection control (ADRC) and it is applied to the control
currents rotor of the DFIG, the DC bus voltage and active and
reactive power exchanged between the DFIG and the network. The
system under study and the proposed control are simulated using
MATLAB/SIMULINK.





References:
[1] Fredo, B., Marco, L. and Ke, M. Power Electronics Converters for Wind
turbine Systems, IEEE Transaction on industry applications, vol. 48, No.
2, March/April 2012.
[2] Tapia, A., Tapia, G., Ostolaza, J.X. and Saenz, J.R. Modeling and
control of a wind turbine driven doubly fed induction generator, IEEE
Transactions on Energy conversion, vol. 18, No. 2, June 2003.
[3] Han, Jingqing. From PID to Active disturbance rejection Control, IEEE
Transaction on industrial electronics, vol.56, No.3, March 2009.
[4] Xu, L. and Cartwright, P. Direct active and reactive power control of
DFIG for wind energy generation, IEEE Transactions on Energy
conversion, vol. 21, No. 2, Sept 2006.
[5] Gernot, H. A Simulative Study on Active Disturbance Rejection Control
(ADRC) as a Control Tool for Practioners, Electronics 2013,2,246-
279;doi:10.3390/electronics2030246.
[6] Pablo, L. and Julio, U. Doubly Fed Induction Generator Model for
transient Stability Analysis, IEEE Transaction on energy conversion,
vol. 20, No. 2, June 2005.
[7] Betran, B., Ahmed-ali, T., and Benbouzid, M.E.H, Sliding Mode Power
Control of Variable Speed Wind Energy Conversion systems, IEEE
Transaction on energy conversion, vol. 23, No. 2, June 2008.
[8] Oscar, B. Sliding Mode Control strategy for Wind Turbine Power
Maximization, Energies 2012, 5, 2310-2330; doi:10..3390/en5072310.
[9] Muller, S., Diecke, M., and Doncher, R.W, Doubly Fed Induction
Generator Systems for Wind Turbines, IEEE Industry Applications
Magazine, vol. 8, Issue 3, May/June 2002.
[10] Zheng, O., On Active Disturbance Rejection Control: Stability analysis
and Applications in Disturbance Decoupling Control, Ph.D. Dissertation,
Dept of Elect. Comp. Eng., Cleveland State University, Cleveland,
USA, July 2009.
[11] Zheng, Q. and Gao, Z. On Practical Applications of Active Disturbance
rejection Control, Proceeding of the 29th chinese conference, July 29-
31, 2010, Beijing, China.
[12] Wankun, Z., Shao, S. and Gao, Z., A Stability Study of the active
disturbance rejection Control Problem by a Singular Perturbation
approach, Applied Mathematical sciences, vol. 3, No. 10, 491-508.
[13] Jingqing, H., Auto-Disturbance Rejection Control and its Applications,
Control decision, vol. 13, No. 1, 1998, pp. 19-23.
[14] GHENNAM, T., 2011, Supervision d’une ferme éolienne pour son
integration dans la gestion d’un réseau électrique, Apport des
convertisseurs multi niveaux au réglage des éoliennes à base de
machine asynchrone à double alimentation, Thèse de doctorat, No
d’ordre. 162, Ecole Centrale de Lille.
[15] Eftichios, K. and Kostas, K., Design of a maximum power tracking
system for wind-energy-conversion applications, IEEE Transaction on
industrial electronics, vol. 53, No. 2, pp. 486-494, April 2006.