A High Quality Factor Filter Based on Quasi-Periodic Photonic Structure

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue- Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.




References:
[1] Madsen C. K., Zhao J. H., Optical filter design and analysis: a signal
processing approach. Wiley, New York, (1999).
[2] Rostami A., Generalized Fibonacci quasi photonic crystals and
generation of superimposed Bragg Gratings for optical communication.
Microelectronics Journal 37 897–903 (2006).
[3] Kurosaki H., Koshiishi H., Suzuki T., Tsuchiya K., Development of
tunable imaging spectro-polarimeter for remote sensing. Adv. Space Res
32 11 2141–2146 (2003).
[4] Chaudhari A. J., Darvas F., Bading J. R., Moats R. A., Conti P. S., Smith
D. J., Cherry S. R., Leahy R. M., Hyperspectral and multispectral
bioluminescence optical tomography for small animal imaging. Phys.
Med. Biol. 50 23, 5421–5441 (2005).
[5] Woltman S. J., Jay G. D., Crawford G. P., Liquid-crystal materials find a
new order in biomedical applications. Nat. Mater. 6 929–938 (2007).
[6] Gat N., Imaging spectroscopy using tunable filters: a review. Proc. SPIE
4056, 50–64 (2000).
[7] Sakoda K, Optical Properties of Photonic Crystals. Springer-Verlag,
Berlin, (2001).
[8] Mehdizadeh F., Alipour-Banaei H., Daie-Kuzekanani Z., All optical
multi reflection structure based on one dimensional photonic crystals for
WDM communication systems. Optoelectronics and Advanced
Materials-Rapid Communications 6 5-6 527-531 (2012).
[9] Qiao F., Zhang C., Wan J., Zi J., Photonic quantum-well structures:
multiple channeled filtering phenomena. Appl. Phys. Lett. 77 23, 3698–
3701 (2000).
[10] Lin W. H., Wu C. J., Yang T. J., and Chang, S. J., Terahertz multi
channeled filter in a superconducting photonic crystal. Optics Express,
18 27155-27166 (2010).
[11] Lin M. and Xu J. Narrow pass-band and narrow transmission-angle filter
by photonic heterostructures containing negative index materials. IEEE
ICMMT Proceedings 1662-1664 (2010).
[12] Alipour-Banaei H., Mehdizadeh F., a proposal for anti-uvb filter based
on one-dimensional photonic crystal structure. Digest Journal of
Nanomaterials and Biostructures 7 367-371 (2012).
[13] Schechtman D., Blech I., Gratias D., Cahn J. W., Metallic Phase with
Long-Range Orientational Order and No Translational Symmetry. Phys.
Rev. Lett. 53 1951 (1984).
[14] Kohmoto M., Sutherland B., Iguchi K., Localization of optics:
Quasiperiodic media. Phys. Rev. Lett. 58 2436 (1987).
[15] Huang X., Liu Y., Mo D., Transmission of light through a class of
quasiperiodic multilayers. Solid State Commun. 87 601 (1993)
[16] Zirak-Gharamaleki S., Narrowband optical filter design for DWDM
communication applications based onGeneralized Aperiodic Thue–
Morse structures. Optics Communications 284 579–584 (2011)
[17] W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng, Features of the
perfect transmission in Thue–Morse dielectric multilayers. JOSA B, 28,
11 2584-2591 (2011)
[18] N. Liu, Propagation of light waves in Thue-Morse dielectric multilayers.
Phys. Rev. B 55, 3543–3547 (1997)
[19] Vasconcelos M. S. and Albuquerque E. L. Transmission fingerprints in
quasiperiodic dielectric multilayers. Phys. Rev. B 59 11128-11131
(1999).
[20] Dal Negro L., Stolfi M., Yi Y., Michel J., Duan X., Kimerling L. C.,
LeBlanc J., Haavisto J., Photon band gap properties and omnidirectional
reflectance in Si/SiO2Thue–Morse quasicrystals. Appl. Phys. Lett. 84,
5186 (2004).
[21] Jiang X., Zhang Y., Feng S., Huang K. C., Yi Y. and Joannopoulos J. D.,
Photonic band gaps and localization in the Thue–Morse structures. Appl.
Phys. Lett. 86, 201110 (2005).
[22] Dal Negro L., Yi J. H., Nguyen V., Yi Y., Michel J., Kimerling L. C.,
Spectrally enhanced light emission from aperiodic photonic structures.
Appl. Phys. Lett. 86, 261905 (2005).
[23] Agarwal V., Soto-Urueta J. A., Becerra D., and Miguel E. Mora-Ramos,
Light propagation in polytypeThue–Morse structures made of porous
silicon. Photonics and Nanostructures - Fundamentals and Applications
3 155-161 (2005).
[24] Zhang G., Yang X., Li Y., Song H., Optical transmission through multicomponent
generalized Thue–Morse superlattices. Physica B:
Condensed Matter 405 3605-3610 (2010).
[25] Grigoriev V. V., Biancalana F., Bistability and stationary gap solitons in
quasiperiodic photonic crystals based on Thue–Morse sequence.
Photonics and Nanostructures – Fundamentals and Applications 8 285–
290 (2010). [26] Deng X. H., Yuan J. R., Hong W. Q., Ouyang H.Tunable filters based on
Thue-Morse quasicrystals composed of single-negative materials.
Physics Procedia 22 360 – 365 (2011).
[27] Quyang H., Deng X. H., Driection independent band gaps extension
based on Thue-Morse photonic heterostructures containing negative
index materials. Materials Science Forum 1077 675-677 (2011).
[28] Yeh P, Optical Waves in Layered Media Wiley New York Chap. 6
(1998).