A Floating Gate MOSFET Based Novel Programmable Current Reference

In this paper a scheme is proposed for generating
a programmable current reference which can be implemented
in the CMOS technology. The current can be varied over a
wide range by changing an external voltage applied to one
of the control gates of FGMOS (Floating Gate MOSFET).
For a range of supply voltages and temperature, CMOS
current reference is found to be dependent, this dependence
is compensated by subtracting two current outputs with the
same dependencies on the supply voltage and temperature.
The system performance is found to improve with the
use of FGMOS. Mathematical analysis of the proposed
circuit is done to establish supply voltage and temperature
independence. Simulation and performance evaluation of the
proposed current reference circuit is done using TANNER
EDA Tools. The current reference shows the supply and
temperature dependencies of 520 ppm/V and 312 ppm/oC,
respectively. The proposed current reference can operate down
to 0.9 V supply.





References:
[1] Ye, R. W., and Tsividis, Y. P., “Bandgap voltage reference sources in
CMOS technology ”, Electron. Lett., vol. 18, pp. 24-25, 1982.
[2] R. Dehghani, S. M. Atarodi, “A new low voltage precision CMOS current
reference with no external components ”, IEEE Trans. Circuits Syst. II,
vol. 50, no.12, pp. 928-932, Dec. 2003.
[3] Bendali, A., and Audet, Y., “A 1-V CMOS current reference with
temperature and process compensation ”, IEEE Trans. Circuits Syst. I,
vol. 54, no. 2, pp. 1424-1429, 2007.
[4] J. Chen and B. Shi, “1 V CMOS current reference with 50 ppm/0C
temperature coecient ”, Electron. Lett., vol. 39, pp. 209-210, Jan. 2003.
[5] F. Fiori, P. S. Crovetti, “A new compact temperature-compensated CMOS
current reference ”, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 52,
no. 11, pp. 724-728, Nov. 2005.
[6] C. Yoo, J. Park, “CMOS current reference with supply and temperature
compensation ”, Electronic letters, IET Jour. Vol. 43, Issue 25, Dec. 2007.
[7] J. Ramirez-Angulo, S. C. Choi, G. Gonzalez-Altamirano, “Low Voltage
OTA Architecture Using Multiple Input Floating Gate Transistor ”, J.
IEEE Trans. Circuits Syst. ,vol. 42, no. 12, pp. 971-974, Nov. 1995. [8] E. Sanchez-Sinencio, A. G. Andreou, “Low Votage/Low Power Integrated
Circuits and Systems ”, IEEE Press., 1999.
[9] S. S. Rajput, S. S. Jamuar, “Design Techniques For Low Voltage Analog
Circuits Structures ”, NSM2001/IEEE, Malaysia, Nov. 2001.
[10] Susheel Sharma, S. S. Rajput, L. K. Magotra, S. S. Jamuar, “FGMOS
based wide range low voltage current mirror and its applications ”,
Circuits and systems, APCCAS’02, 2002 Asia-Pacific Conference, Vol.
2, pp. 331- 334, Oct. 2002.
[11] V. Suresh Babu, Rose Katherine A. A., M. R. Baiju, “Adaptive Neuron
Activation Function with FGMOS Based Operational Transconductance
Amplifier ”, Proceedings of IEEE Computer Society, Annual Symposium
on VLSI, April 2007.
[12] P. Hasler, T. S. Lande, “Overview of floating gate devices, circuits and
systems ”, IEEE J. Solid State Circuits, vol. 48, no.1, pp. 1-3, Jan 2001.
[13] Paul Hasler. “Floating Gate Devices, Circuits, and Systems ”, IEEE
Cmputer society, Proc. 9th International Database Engineering and
Applications Symp., 2005.
[14] S. Tuan Wang, “On the I-V characteristics of floating gate MOS
transistor ”, IEEE Trans. Elect. Devices, vol. 26, no. 9, pp. 1292-1294,
Sept. 1979.
[15] Venkatesh Srinivasan, G. Serrano, C. M. Twigg, Paul Hasler, “A Floating
gate Based Programmable CMOS reference ”, IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 55, no. 11, pp. 3448-3456, Dec. 2008.
[16] P. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, “Analysis and Design of
Analog Integrated Circuits ”, 4th ed. Hoboken, NJ: Wiley, 2001.