A Carbon Footprint Analysis of Rapeseed Oil and Rapeseed Methyl Ester Produced in Romania as Fuels for Diesel Engines

Considering the increasing need of biofuels in Europe and the legislative requirements of the European Union it is needed to quantify the greenhouse gas emissions of biofuels life cycle. In this article a carbon footprint analysis to quantify these gases emitted during production and use of Romanian rapeseed oil (RO) and biodiesel from rapeseed oil (RME) was conducted. The functional unit was considered the LHV of diesel oil of 42.8 MJ·kg-1 corresponding to 1.15kg. of RO and 1.10 kg. of RME. When the 3 fuels were compared, the results show important benefits when using rapeseed oil or biodiesel instead of diesel. The most impacting stage in terms of GHG emissions is the use of the fuels. In this stage, rapeseed oil registers a total quantity of 3,229 kg CO2eq.·FU-1 and biodiesel register a total quantity of 3,088 kg CO2eq.·FU-1 while mineral diesel registers a total quantity of 3,156 kg CO2eq.·FU-1 emitted in the air. Taking into account that rape plant absorbed during growth stage the same quantity of CO2 as emitted into atmosphere during usage stage of the fuel, when compared the three fuels, rapeseed oil and biodiesel obtain obvious benefits against fossil diesel. Results show that by substituting diesel with RO a total quantity of 5,663 kg. CO2eq.·FU-1 would be saved while using biodiesel a total quantity of 5,570 kg. CO2eq.·FU-1 can be saved.





References:
[1] Directive 2009/28/EC on the promotion of the use of energy from
renewable sources and amending and subsequently repealing Directives
2001/77/EC and 2003/30/EC. 2009.04.23. Official J Eur Union 2009.
[2] Carles M. Gasol, Jordi Salvia, Joan Serra, AssumpcióAntón, Eva
Sevigne, Joan Rieradevall, Xavier Gabarrell, A life cycle assessment of
biodiesel production from winter rape grown in Southern Europe,
Biomass and Bioenergy, Volume 40, May 2012, Pages 71-81, ISSN
0961-9534, 10.1016/j.biombioe.2012.02.003.
[3] Mittelbach M, Remschmidt C. Biodiesel the comprehensive handbook.
Boersedruck (Austria): Ges.m.b.H; 2005.
[4] F. Cherubini, N.D. Bird, A. Cowie, G. Jungmeier, B. Schlamadinger, S.
Woess-Gallasch, Energy- and greenhouse gas-based LCA of biofuel and
bioenergy systems: Key issues, ranges and recommendations,
ResourConservRecycl, 53, 2009.
[5] International Standard Organization. ISO 14044: environmental
Management – Life cycle assessment – requirements and guidelines;
2006. Genoa, Switzerland.
[6] International Standard Organization. ISO 14044: environmental
Management – Life cycle assessment – Principles and Framework;
2006. Genoa, Switzerland.
[7] Gasol CM, Gabarrell X, Anton A, Rigola M, Carrasco J, Ciria P, et al.
Life cycle assessment of a Brassica carinata bioenergy cropping system
in Southern Europe. Biomass Bioenerg 2007; 31:543e55.
[8] Bernesson S, Nilsson D, Hansson PA. A limited LCA comparing largeand
small-scale production of ethanol for heavy engines under Swedish
conditions. Biomass Bioenergy 2006;30(1):46e57.
[9] Salvia J. Agronomic Engineering in Institute of Agrofood research
(IRTA). Advicer of Koipesol Spain. Personal Communication by Oral
Communication and email in April of 2007.
[10] Bernesson S, Nilsson D, Hansson PA. A limited LCA comparing largeand
small-scale production of rape methyl ester (RME) under Swedish
conditions. Biomass Bioenergy 2004;26(6):545e59.
[11] Lechon Y, Cabal H, de la Rua C, Izquierdo L, Saez RM. Analisis de
Ciclo de vida de Combustibles alternativospara el Transporte. Fase II:
analisis de Ciclo de Vida comparativodel Biodiesel y del Diesel. Madrid
(Spain): Centro de PublicacionesSecretarıaTecnica. Enviroment Spanish
Ministry; 2006.
[12] Faith WL, Keyes DB, Clark RL. Industrial Chemicals. New York: John
Wiley & Sons; 1957.
[13] Nemecek T, Heil A, Huguenim O, Meier S, Erzinger S, Blaser S. In:
Nemecek T, Heil A, Huguenim O, Meier S, Erzinger S, Blaser S,
editors. Life cycle inventories of agricultural production systems.
Du¨nderdorf (Switzerland): Swiss Centre for Life Cycle Inventories.
Final report ecoinvent 2000. Available from: www.ecoinvent.ch; 2003.
[14] Audsley E. Harmonisation of environmental life cycle assessment.
European Commision DG VI Agriculture; 1997. Final Report Concerted
action AIR-CT94-2028. p. 139.
[15] Marquez L. Maquinariapara la preparaciondelsuelo, la implantacion de
los cultivos y la fertilizacion VIII. Madrid (Spain): Blake &Helsey;
2001.
[16] Marquez L. Maquinariaagrıcola: preparacionprimaria, trabajo del suelo,
siembra, plantacion y transplante. Madrid (Spain): Blake &Helsey;
2004.
[17] Frischknecht R, et al. In: Nemecek T, Heil A, Huguenim O, Meier S,
Erzinger S, Blaser S, editors. Life cycle inventories of agricultural
production systems. Du¨nderdorf (Switzerland): Swiss Centre for Life
Cycle Inventories. Final report ecoinvent 2000. Available from:
www.ecoinvent.ch; 2003.
[18] MaibachM,PeterD, SeilerB. In: NemecekT,HeilA,Huguenim O, Meier S,
Erzinger S, Blaser S, editors. Life cycle inventories of agricultural
production systems. Du¨nderdorf (Switzerland): Swiss Centre for Life
Cycle Inventories. Final report ecoinvent 2000. Available from:
www.ecoinvent.ch; 2003.
[19] SAEFL. HandbuchOffroad-Datenbank. In: Nemecek T, coord. Life
cycle inventories of agricultural production system, Du¨ bendorf,
Switzerland, 2003. p. 56–9.
[20] Rinaldi M, Stalder E. Trends imAbgasverhaltenlandwirtschaftlicher
Traktoren—NeueModelledeutlichsauberer. In: Nemecek T, coord. Life
cycle inventories of agricultural production system, Du¨ bendorf,
Switzerland, 2003. p. 56–9.
[21] Davis JH. Life cycle inventori (LCI) of fertilize. production-fertilizer
products used in Sweden and Wester Europe. In: Nemecek T, Heil A,
Huguenim O, Meier S, Erzinger S, Blaser S, editors. Life cycle
inventories of agricultural production systems. Du¨nderdorf
(Switzerland): Swiss Centre for Life Cycle Inventories. Final report
ecoinvent 2000. Available from: www.ecoinvent.ch; 2003.
[22] Green M. Energy in pesticide manufacture, distribution and use. In:
Nemecek T, Heil A, Huguenim O, Meier S, Erzinger S, Blaser S,
editors. Life cycle inventories of agricultural production systems.
Du¨nderdorf (Switzerland): Swiss Centre for Life Cycle Inventories.
Final report ecoinvent 2000. Available from: www.ecoinvent.ch; 2003.
[23] Narain M, Singh BPN. Energy profile a seed-processing plant.
ApplEnerg 1998; 30 (3):227e34
[24] Hauschild B, Meeusen M. Estimating pesticide emissions for LCA of
agricultural products. In: Agricultural data for life cycle assessments.
The Hague (The Netherlands): LCANet Food; 2000.
[25] Brentrup F, Kusters J, Kuhlmann H, Lammel J. Application of the Life
cycle assessment methodology to agricultural production: an example of
sugar beet production with different forms of nitrogen fertilisers. Eur J
Agron 2001;14(1): 221e33.
[26] Brentrup F, Ku¨ster J, Lammel J, Barraclough P, Kuhlmann H.
Environmental impact assessment of agricultural production systems
using life cycle assessment (LCA) methodology: II. The application to N
fertilizer use in winter wheat production systems. Eur J Agron
2004;20(3):265e79.
[27] Heller MC, Keoleian GA, Volk TA. Life cycle assessment of a willow
bioenergy cropping system. Biomass Bioenerg 2003; 25(2):147e65.
[28] Brentrup F, Ku¨ster J, Lammel J, Kuhlmann H. Environmental impact
assessment of agricultural production systems using life cycle
assessment (LCA) methodology: I. Theoretical concept of a LCA
method tailored to crop production. Eur J Agron 2004;20(3):247e64.
[29] Brentrup F, Ku¨ster J. Methods to estimate to potential N emissions
related to crop production. In: Weidema B, Meeusen M, editors.
Agricultural data for life cycle assessment. The Hague (The
Netherlands): Agricultural Economics Institute; 2000.
[30] Ciria MP, Mazon MP, Carrasco JE. Florencia (Italia). In: Van Swaaij
WPM, Fja¨llstro¨m T, Helm P, Grassi A, editors. Poplar productivity on
short rotation during three consecutive cycles in extreme continental
climate. Second World Biomass Conference. Biomass for energy,
industry and climate Protection; 2004. p. 370e3.