Trends in Competitiveness of the Thai Printing Industry

Since the world printing industry has to confront globalization with a constant change, the Thai printing industry, as a small but increasingly significant part of the world printing industry, cannot inevitably escape but has to encounter with the similar change and also the need to revamp its production processes, designs and technology to make them more appealing to both international and domestic market. The essential question is what is the Thai competitive edge in the printing industry in changing environment? This research is aimed to study the Thai level of competitive edge in terms of marketing, technology, environment friendly, and the level of satisfaction of the process of using printing machines. To access the extent to which is the trends in competitiveness of Thai printing industry, both quantitative and qualitative study were conducted. The quantitative analysis was restricted to 100 respondents. The qualitative analysis was restricted to a focus group of 10 individuals from various backgrounds in the Thai printing industry. The findings from the quantitative analysis revealed that the overall mean scores are 4.53, 4.10, and 3.50 for the competitiveness of marketing, the competitiveness of technology, and the competitiveness of being environment friendly respectively. However, the level of satisfaction for the process of using machines has a mean score only 3.20. The findings from the qualitative analysis have revealed that target customers have increasingly reordered due to their contentment in both low prices and the acceptable quality of the products. Moreover, the Thai printing industry has a tendency to convert to ambient green technology which is friendly to the environment. The Thai printing industry is choosing to produce or substitute with products that are less damaging to the environment. It is also found that the Thai printing industry has been transformed into a very competitive industry which bargaining power rests on consumers who have a variety of choices.

Manual Testing of Web Software Systems Supported by Direct Guidance of the Tester Based On Design Model

Software testing is important stage of software development cycle. Current testing process involves tester and electronic documents with test case scenarios. In this paper we focus on new approach to testing process using automated test case generation and tester guidance through the system based on the model of the system. Test case generation and model-based testing is not possible without proper system model. We aim on providing better feedback from the testing process thus eliminating the unnecessary paper work.

Electronic System Design for Respiratory Signal Processing

This paper presents the design related to the electronic system design of the respiratory signal, including phases for processing, followed by the transmission and reception of this signal and finally display. The processing of this signal is added to the ECG and temperature sign, put up last year. Under this scheme is proposed that in future also be conditioned blood pressure signal under the same final printed circuit and worked.

Real-time Haptic Modeling and Simulation for Prosthetic Insertion

In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed.

Reliability Analysis of Tubular Joints of Offshore Platforms in Malaysia

The oil and gas industry has moved towards Load and Resistance Factor Design through API RP2A - LRFD and the recently published international standard, ISO-19902, for design of fixed steel offshore structures. The ISO 19902 is intended to provide a harmonized design practice that offers a balanced structural fitness for the purpose, economy and safety. As part of an ongoing work, the reliability analysis of tubular joints of the jacket structure has been carried out to calibrate the load and resistance factors for the design of offshore platforms in Malaysia, as proposed in the ISO. Probabilistic models have been established for the load effects (wave, wind and current) and the tubular joints strengths. In this study the First Order Reliability Method (FORM), coded in MATLAB Software has been employed to evaluate the reliability index of the typical joints, designed using API RP2A - WSD and ISO 19902.

A New Digital Transceiver Circuit for Asynchronous Communication

A new digital transceiver circuit for asynchronous frame detection is proposed where both the transmitter and receiver contain all digital components, thereby avoiding possible use of conventional devices like monostable multivibrators with unstable external components such as resistances and capacitances. The proposed receiver circuit, in particular, uses a combinational logic block yielding an output which changes its state as soon as the start bit of a new frame is detected. This, in turn, helps in generating an efficient receiver sampling clock. A data latching circuit is also used in the receiver to latch the recovered data bits in any new frame. The proposed receiver structure is also extended from 4- bit information to any general n data bits within a frame with a common expression for the output of the combinational logic block. Performance of the proposed hardware design is evaluated in terms of time delay, reliability and robustness in comparison with the standard schemes using monostable multivibrators. It is observed from hardware implementation that the proposed circuit achieves almost 33 percent speed up over any conventional circuit.

Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures

Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.

Improving the Flexibility of Employment in Polish Economic Practice

Modern organizations operate under the pressure of dynamic and often unpredictable changes, both in external and internal environment. Market success, in this context, requires a particular competence in the form of flexibility, interpreted here both on the level of individuals and on the level of organization. This paper addresses the changes taking place in the sphere of employment, as observed in economic entities operating on Polish market. Based on own empirical studies, the authors focus on the progressing trend of ‘flexibilization’ of employment, particularly in the context of transformations in organizational structure, designed to facilitate the transition into management by projects and differentiation of labor forms.

In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability

A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.

Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models

Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different micromodels with three different pore structures are designed. Three models with different layer orientation, one homogenous model and one heterogeneous model are designed. In order to import the effect of heterogeneity of porous media, three types of pore structures are distributed accidentally and with equal ratio throughout heterogeneous micromodel network according to random normal distribution. The results show that maximum EOR recovery factor will happen in a situation where the layers are orthogonal to the path of mainstream and the minimum EOR recovery factor will happen in a situation where the model is heterogeneous. This experiments show that in polymer-surfactant flooding, with increase of angles of layers the EOR recovery factor will increase and this recovery factor is strongly affected by local heterogeneity around the injection zone.

Failure to Replicate the Unconscious Thought Advantages

In this study we tried to replicate the unconscious thought advantage (UTA), which states that complex decisions are better handled by unconscious thinking. We designed an experiment in e-prime using similar material as the original study (choosing between four different apartments, each described by 12 attributes). A total of 73 participants (52 women (71.2%); 18 to 62 age: M=24.63; SD=8.7) took part in the experiment. We did not replicate the results suggested by UTT. However, from the present study we cannot conclude whether this was the case of flaws in the theory or flaws in our experiment and we discuss several ways in which the issue of UTA could be examined further.

The Role of Intrinsic Motivation in Explaining Students- Willingness to Use Software Applications

The present study was designed to test the influence of intrinsic ICT-motivation, perceived usefulness and ease of use on business students- willingness to use a particular software package. A questionnaire was completed by 196 business students in Norway. We found that 34% of the variance in the students- willingness to use the software could be explained by the three proposed antecedents. Intrinsic ICT-motivation seems to be the most important predictor of students- satisfaction willingness to use the software package.

Experimental Design and Performance Analysis in Plasma Arc Surface Hardening

In this paper, the experimental design of using the Taguchi method is employed to optimize the processing parameters in the plasma arc surface hardening process. The processing parameters evaluated are arc current, scanning velocity and carbon content of steel. In addition, other significant effects such as the relation between processing parameters are also investigated. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the effects of these processing parameters. Through this study, not only the hardened depth increased and surface roughness improved, but also the parameters that significantly affect the hardening performance are identified. Experimental results are provided to verify the effectiveness of this approach.

Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System

Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).

Consideration of Criteria of Vibration Comfort of People in Diagnosis and Design of Buildings

The increasing influence of traffic on building objects and people residing in them should be taken into account in diagnosis and design. Users of buildings expect that vibrations occurring in their environment, will not only lead to damage to the building or its accelerated wear, but neither would affect the required comfort in rooms designed to accommodate people. This article describes the methods and principles useful in designing and building diagnostics located near transportation routes, with particular emphasis on the impact of traffic vibration on people in buildings. It also describes the procedures used in obtaining information about the parameters of vibrations in different cases of diagnostics and design. A universal algorithm of procedure in diagnostics and design of buildings taking into account assurance of human vibration comfort of people residing in the these buildings was presented.

Optimization of Partially Filled Column Subjected to Oblique Loading

In this study, optimization is carried out to find the optimized design of a foam-filled column for the best Specific Energy Absorption (SEA) and Crush Force Efficiency (CFE). In order to maximize SEA, the optimization gives the value of 2.3 for column thickness and 151.7 for foam length. On the other hand to maximize CFE, the optimization gives the value of 1.1 for column thickness and 200 for foam length. Finite Element simulation is run by using this value and the SEA and CFE obtained 1237.76 J/kg and 0.92.

Closed form Delay Model for on-Chip VLSIRLCG Interconnects for Ramp Input for Different Damping Conditions

Fast delay estimation methods, as opposed to simulation techniques, are needed for incremental performance driven layout synthesis. On-chip inductive effects are becoming predominant in deep submicron interconnects due to increasing clock speed and circuit complexity. Inductance causes noise in signal waveforms, which can adversely affect the performance of the circuit and signal integrity. Several approaches have been put forward which consider the inductance for on-chip interconnect modelling. But for even much higher frequency, of the order of few GHz, the shunt dielectric lossy component has become comparable to that of other electrical parameters for high speed VLSI design. In order to cope up with this effect, on-chip interconnect has to be modelled as distributed RLCG line. Elmore delay based methods, although efficient, cannot accurately estimate the delay for RLCG interconnect line. In this paper, an accurate analytical delay model has been derived, based on first and second moments of RLCG interconnection lines. The proposed model considers both the effect of inductance and conductance matrices. We have performed the simulation in 0.18μm technology node and an error of as low as less as 5% has been achieved with the proposed model when compared to SPICE. The importance of the conductance matrices in interconnect modelling has also been discussed and it is shown that if G is neglected for interconnect line modelling, then it will result an delay error of as high as 6% when compared to SPICE.

Creating a Space for Teaching Problem Solving Skills to Engineering Students through English Language Teaching

The complexity of teaching English in higher institutions by non-native speakers within a second/foreign language setting has created continuous discussions and research about teaching approaches and teaching practises, professional identities and challenges. In addition, there is a growing awareness that teaching English within discipline-specific contexts adds up to the existing complexity. This awareness leads to reassessments, discussions and suggestions on course design and content and teaching approaches and techniques. In meeting expectations teaching at a university specified in a particular discipline such as engineering, English language educators are not only required to teach students to be able to communicate in English effectively but also to teach soft skills such as problem solving skills. This paper is part of a research conducted to investigate how English language educators negotiate with the complexities of teaching problem solving skills through English language teaching at a technical university. This paper reports the way an English language educator identified himself and the way he approached his teaching in this institutional context.