Phytoremediation of Cd and Pb by Four Tropical Timber Species Grown on an Ex-tin Mine in Peninsular Malaysia

Contamination of heavy metals in tin tailings has caused an interest in the scientific approach of their remediation. One of the approaches is through phytoremediation, which is using tree species to extract the heavy metals from the contaminated soils. Tin tailings comprise of slime and sand tailings. This paper reports only on the finding of the four timber species namely Acacia mangium, Hopea odorata, Intsia palembanica and Swietenia macrophylla on the removal of cadmium (Cd) and lead (Pb) from the slime tailings. The methods employed for sampling and soil analysis are established methods. Six trees of each species were randomly selected from a 0.25 ha plot for extraction and determination of their heavy metals. The soil samples were systematically collected according to 5 x 5 m grid from each plot. Results showed that the concentration of heavy metals in soils and trees varied according to species. Higher concentration of heavy metals was found in the stem than the primary roots of all the species. A. Mangium accumulated the highest total amount of Pb per hectare basis.

Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop

Groundwater Contamination due to Bhalaswa Landfill Site in New Delhi

Sampling and analysis of leachate from Bhalaswa landfill and groundwater samples from nearby locations, clearly indicated the likely contamination of groundwater due to landfill leachate. The results of simulation studies carried out for the migration of Chloride from landfill shows that the simulation results are in consonance with the observed concentration of Chloride in the vicinity of landfill facility. The solid waste disposal system presently being practiced in Delhi consists of mere dumping of wastes generated, at three locations Bhalaswa, Ghazipur, and Okhla without any regard to proper care for the protection of surrounding environment. Bhalaswa landfill site in Delhi, which is being operated as a dump site, is expected to become cause of serious groundwater pollution in its vicinity. The leachate from Bhalaswa landfill was found to be having a high concentration of chlorides, as well as DOC, COD. The present study was undertaken to determine the likely concentrations of principle contaminants in the groundwater over a period of time due to the discharge of such contaminants from landfill leachates to the underlying groundwater. The observed concentration of chlorides in the groundwater within 75m of the radius of landfill facility was found to be in consonance with the simulated concentration of chloride in groundwater considering one dimensional transport model, with finite mass of contaminant source. Governing equation of contaminant transport involving advection and diffusion-dispersion was solved in matlab7.0 using finite difference method.

Leatherback Turtle (Dermochelys coriacea) after Incubation Eggshell in Andaman Sea, Thailand Study: Microanalysis on Ultrastructure and Elemental Composition

There are few studies on eggshell of leatherback turtle which is endangered species in Thailand. This study was focusing on the ultrastructure and elemental composition of leatherback turtle eggshells collected from Andaman Sea Shore, Thailand during the nesting season using scanning electron microscope (SEM). Three eggshell layers of leatherback turtle; the outer cuticle layer or calcareous layer, the middle layer or middle multistrata layer and the inner fibrous layer were recognized. The outer calcareous layer was thick and porosity which consisted of loose nodular units of various crystal shapes and sizes. The loose attachment between these units resulted in numerous spaces and openings. The middle layer was compact thick with several multistrata and contained numerous openings connecting to both outer cuticle layer and inner fibrous layer. The inner fibrous layer was compact and thin, and composed of numerous reticular fibers. Energy dispersive X-ray microanalysis detector revealed energy spectrum of X-rays character emitted from all elements on each layer. The percentages of all elements were found in the following order: carbon (C) > oxygen (O) > calcium (Ca) > sulfur (S) > potassium (K) > aluminum (Al) > iodine (I) > silicon (Si) > chlorine (Cl) > sodium (Na) > fluorine (F) > phosphorus (P) > magnesium (Mg). Each layer consisted of high percentage of CaCO3 (approximately 98%) implying that it was essential for turtle embryonic development. A significant difference was found in the percentages of Ca and Mo in the 3layers. Moreover, transition metal, metal and toxic non-metal contaminations were found in leatherback turtle eggshell samples. These were palladium (Pd), molybdenum (Mo), copper (Cu), aluminum (Al), lead (Pb), and bromine (Br). The contamination elements were seen in the outer layers except for Mo. All elements were readily observed and mapped using Smiling program. X-ray images which mapped the location of all elements were showed. Calcium containing in the eggshell appeared in high contents and was widely distributing in clusters of the outer cuticle layer to form CaCO3 structure. Moreover, the accumulation of Na and Cl was observed to form NaCl which was widely distributing in 3 eggshell layers. The results from this study would be valuable on assessing the emergent success in this endangered species.

Effect of Curing Profile to Eliminate the Voids / Black Dots Formation in Underfill Epoxy for Hi-CTE Flip Chip Packaging

Void formation in underfill is considered as failure in flip chip manufacturing process. Void formation possibly caused by several factors such as poor soldering and flux residue during die attach process, void entrapment due moisture contamination, dispense pattern process and setting up the curing process. This paper presents the comparison of single step and two steps curing profile towards the void and black dots formation in underfill for Hi-CTE Flip Chip Ceramic Ball Grid Array Package (FC-CBGA). Statistic analysis was conducted to analyze how different factors such as wafer lot, sawing technique, underfill fillet height and curing profile recipe were affected the formation of voids and black dots. A C-Mode Scanning Aqoustic Microscopy (C-SAM) was used to scan the total count of voids and black dots. It was shown that the 2 steps curing profile provided solution for void elimination and black dots in underfill after curing process.

Process Development of Safe and Ready-to-eat Raw Oyster Meat by Irradiation Technology

White scar oyster (Crassostrea belcheri) is often eaten raw and being the leading vehicle for foodborne disease, especially Salmonella Weltevreden which exposed the prominent and most resistant to radiation. Gamma irradiation at a low dose of 1 kGy was enough to eliminate S. Weltevreden contaminated in oyster meat at a level up to 5 log CFU/g while it still retain the raw characteristics and equivalent sensory quality as the non-irradiated one. Process development of ready-to-eat chilled oyster meat was conducted by shucking the meat, individually packed in plastic bags, subjected to 1 kGy gamma radiation at chilled condition and then stored in 4oC refrigerated temperature. Microbiological determination showed the absence of S. Weltevreden (5 log CFU/g initial inoculated) along the whole storage time of 30 days. Sensory evaluation indicated the decreasing in sensory scores along storage time which determining the product shelf life to be 18 days compared to 15 days of nonirradiated one. The most advantage of developed process was to provide the safe raw oyster to consumers and in addition sensory quality retained and 3-day extension shelf life also exist.

Cement Mortar Lining as a Potential Source of Water Contamination

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Study of Microbial Critical Points of Saffron from Farm to Factory in Iran

In this research saffron samples were prepared from farms and sampling was done in four states contain : sampling from fresh saffron of petal with forceps , sampling from fresh saffron of petal by hands, sampling from dried sample by warm air in shadow, sampling from dried sample which dried by dryer. Samples collected and kept in sterile tubes and containers and carried to laboratory and maintained until experiment. Microbial experiments were performed to determine microbial load such as total count, Staphylococcus aureus, coli form, E.coli, mold and yeast. Results showed that in picking and drying stages the contamination amount increases in saffron samples. There was a significant difference between the microbial load of picked up saffron by forceps and by hands, and also between dried saffron by warm air in shadow and by dryer.

Environmental Issues Related to Nuclear Desalination

The paper presents an overview of environmental issues that may be expected with nuclear desalination. The analysis of coupling nuclear power with desalination plants indicates that adverse marine impacts can be mitigated with alternative intake designs or cooling systems. The atmospheric impact of desalination may be greatly reduced through the coupling with nuclear power, while maximizing the socio-economic benefit for both processes. The potential for tritium contamination of the desalinated water was reviewed. Experience with the systems and practices related to the radiological quality of the product water, shows no examples of cross-contamination. Furthermore, the indicators for the public acceptance of nuclear desalination, as one of the most important sustainability aspects of any such large project, show a positive trend. From the data collected, a conclusion is made that nuclear desalination should be supported by decision-makers.

Drug Combinations with Steroid Dispensing in Drugstores: A Study in the Center Area of Bangkok, Thailand

The purposes of this research were 1) to survey the number of drugstores that unlawful dispense of asthma prescription drugs, in form of drug combinations in the Phaya Thai district of Bangkok, 2) to find the steroids contained in that drug combinations, 3) to find a means for informing general public about the dangers of drugs and for a campaign to stop dispensing them. Researcher collected drug combinations from 69 drugstores in Phaya Thai district from Feb 15, 2012 to Mar 15, 2012. The survey found 30.43%, 21, drug stores, sold asthma drug combinations to customers without a prescription. These collected samples were tested for steroid contamination by using Immunochromatography kits. Eleven samples, 52.38%, were found contaminated with steroids. In short, there should be control and inspection of drugstores in the distribution of steroid medications. To improve the knowledge of self health maintenance and drug usage among public, Thai Government and Department of Public Health should educate people about the side effects of using drug combinations and steroids.

Prevention of Biofilm Formation in Urinary Catheter by Coating Enzymes/ Gentamycin/ EDTA

Urinary Tract Infections (UTI) account for an estimated 25-40% nosocomial infection, out of which 90% are associated with urinary catheter, called Catheter associated urinary tract infection (CAUTI). The microbial populations within CAUTI frequently develop as biofilms. In the present study, microbial contamination of indwelling urinary catheters was investigated. Biofilm forming ability of the isolates was determined by tissue culture plate method. Prevention of biofilm formation in the urinary catheter by Pseudomonas aeruginosa was also determined by coating the catheter with some enzymes, gentamycin and EDTA. It was found that 64% of the urinary catheters get contaminated during the course of catheterization. Of the total 6 isolates, biofilm formation was seen in 100% Pseudomonas aeruginosa and E. coli, 90% in Enterococci, 80% in Klebsiella and 66% in S. aureus. It was noted that the biofilm production by Pseudomonas was prolonged by 7 days in amylase, 8 days in protease, 6 days in lysozyme, 7days in gentamycin and 5 days in EDTA treated catheter.

Decontamination of Cr(VI) Polluted Wastewater by use of Low Cost Industrial Wastes

The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the Cr(VI) concentration range of 5 – 40 mg/L. The results showed that the initial Cr(VI) concentration significantly affects the reduction capacity of scrap iron. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the Cr(VI) concentration, the greater the experiment duration with maximum scrap iron reduction capacity. However, due to passivation of active surface, scrap iron reduction capacity continuously decreased in time, especially after Cr(VI) breakthrough. The experimental results showed that highest reduction capacity recorded until Cr(VI) breakthrough was 22.8 mg Cr(VI)/g scrap iron, at CI = 5 mg/L, and decreased with increasing Cr(VI) concentration. In order to assure total reduction of greater Cr(VI) concentrations for a longer period of time, either the mass of scrap iron filling, or the hydraulic retention time should be increased.

Sterility Examination and Comparative Analyses of Inhibitory Effect of Honey on Some Gram Negative and Gram Positive Food Borne Pathogens in South West Nigeria

Food borne illnesses have been reported to be a global health challenge. Annual incidences of food–related diseases involve 76 million cases, of which only 14 million can be traced to known pathogens. Poor hygienic practices have contributed greatly to this. It has been reported that in the year 2000 about 2.1 million people died from diarrheal diseases, hence, there is a need to ensure food safety at all level. This study focused on the sterility examination and inhibitory effect of honey samples on selected gram negative and gram positive food borne pathogen from South West Nigeria. The laboratory examinations revealed the presence of some bacterial and fungal contaminations of honey samples and that inhibitory activity of the honey sample was more pronounced on the gram negative bacteria than the gram positive bacterial isolates. Antibiotic sensitivity test conducted on the different bacterial isolates also showed that honey was able to inhibit the proliferation of the tested bacteria than the employed antibiotics.

Assessment of Risk of Ground Water Resources for the Emergency Supply in Relation to Their Contamination by Metals

The contamination of 15 ground water resources of a selected region earmarked for the emergency supply of population has been monitored. The resources have been selected on the basis of previous assessment of natural conditions and the exploitation of territory in their surroundings and infiltration area. Two resources out of 15 have been excluded from further exploitation, because they have not met some of the 72 assessed hygienic indicators of extended analysis. The remaining 13 resources have been the subject of health risk analysis in relation to the contamination by arsenic, lead, cadmium, mercury, nickel and manganese. The risk analysis proved that all 13 resources meet health standards with regard to the above mentioned purposefully selected elements and may thus be included into crisis plans. Water quality of ground resources may be assessed in the same way with regard to other contaminants.

Use of Pesticides and Their Role in Environmental Pollution

Insect pests are the major source of crop damage, yield and quality reduction in Pakistan and else where in the world. Cotton crop is the most hit crop in Pakistan followed by rice and the second most important foreign exchange earning crop. A wide variety of staple, horticultural and cash crops grown, reflect serious problems of many types of insect pests. To overcome the insect pest problem, pesticide use in Pakistan has increased substantially which has now been further intensified. Pesticides worth more than billions of rupees are imported every year. This paper reviews the over all pesticide use in Pakistan in relation to pesticide prices, support price of cotton and rice, pesticide use in different provinces of Pakistan on different crops and their impact on crop productivity. The environmental pollution caused by the use of pesticides, contamination of soil and water resources and the danger associated with the disposal of their empty containers is also discussed in detail.

Introduction of Hyperaccumulator Plants with Phytoremediation Potential of a Lead- Zinc Mine in Iran

Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metalcontaminated sites. A major step towards the development of phytoremediation of heavy metal impacted soils is the discovery of the heavy metal hyperaccumulation in plants. In this study, the several established criteria to define a hyperaccumulator plant were applied. The case study was represented by a mining area in Hamedan province in the central west part of Iran. Obtained results showed that the most of sampled species were able to grow on heavily metal-contaminated soils and also were able to accumulate extraordinarily high concentrations of some metals such as Zn, Mn, Cu, Pb and Fe. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of some measured heavy metals and, therefore, they have suitable potential for phytoremediation of contaminated soils.

Food Safety Management: Concerns from EU Tourists in Thailand

Culinary culture differences can cause health problems for international tourists in Thailand. This paper drew upon data collected from an international tourist survey conducted in Bangkok, Thailand during summer of 2012. Summer is the period that a variety food safety issues and incidents are often publicized in Thailand. The survey targeted European Union tourists- concerns toward a variety of food safety issues that they encountered during their trip in Thailand. A total of 400 respondents were elicited as data input for t-test, and one way ANOVA test. The findings revealed an astonishing result that up to 46.5 percent of respondents were sick at least one time or more in Thailand. However, the majority of respondents trusted that the Thai hotel and Thai restaurants would ensure food safety, but they did not trust street vendors to ensure food safety. The level of food safety concern can be ranked from most concern to least concern by using the value of mean scores as follows: 1) artificial coloring, 2) use of preservatives, 3) antibiotics, 4) growth hormones, 5) chemical residues, and 6) bacterial contamination. The overall mean score for level of concerns was 3.493 with standard deviation of 1.677 which did not indicate a very high level of concern. In addition, the result for t-test and one way ANOVA test revealed that there was not much effect from the demographic differences to level of food safety concerns.

Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants

 Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.

Differential Sensitivity of Nitrogen-Fixing, Filamentous Cyanobacterial Species to an Organochlorine Insecticide - 6, 7, 8, 9, 10, 10- Hexachloro-1, 5, 5a, 6, 9, 9a-Hexahydro-6, 9- Methano-2, 4, 3-Benzodioxathiepine-3-Oxide

Application of pesticides in the paddy fields has deleterious effects on non-target organisms including cyanobacteria which are photosynthesizing and nitrogen fixing micro-organisms contributing significantly towards soil fertility and crop yield. Pesticide contamination in the paddy fields has manifested into a serious global environmental concern. To study the effect of one such pesticide, three cyanobacterial strains; Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica were selected for their stress responses to an Organochlorine insecticide - 6, 7, 8, 9, 10, 10-hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 4, 3- benzodioxathiepine-3-oxide, with reference to their photosynthesic pigments-chlorophyll-a and carotenoids as well as accessory pigments-phycobiliproteins (phycocyanin, allophycocyanin and phycoerythrin), stress induced biochemical metabolites like carbohydrates, proteins, amino acids, phenols and enzymes-nitrate reductase, glutamine synthetase and succinate dehydrogenase. All the three cyanobacterial strains were adversely affected by the insecticide doses and inhibition was dose dependent. Reduction in photosynthetic and accessory pigments, metabolites, nitrogen fixing and respiratory enzymes of the test organisms were accompanied with an initial increase in their total protein at lower Organochlorine doses. On the other hand, increased amount of phenols in all the insecticide treated concentrations was indicative of stressed activities of the organisms.